Cinética química



Una reacción química es un proceso mediante el cual una o varias sustancias iniciales, llamadas reactivos, se transforman en otras distintas a estas, denominadas productos.

ACTIVIDAD: Concepto de reacción química
ACTIVIDAD: Simulación síntesis del agua
ACTIVIDAD: Simulación de la Precipitación del Diyoduro de plomo
ACTIVIDAD: Simulador del reactivo limitante

La cinética química es la rama de la Química que estudia la velocidad de una reacción. En este vídeo vemos como evoluciona la concentración de reactivos y productos en una reacción química y sirve para entender el concepto de velocidad de reacción de química y las ecuaciones cinéticas:




Existe una relación entre las concentraciones de los reactivos y el tiempo diferentes para cada orden de reacción

ACTIVIDAD I: Relación entre la concentración de reactivos y el tiempo

Una secuencia de etapas elementales que da lugar a la reacción global es lo que se conoce como mecanismo de reacción, la etapa limitante de la velocidad de reacción es la etapa más lenta del mecanismo.
Molecularidad es el número de moléculas que intervienen en una reacción y no hay que confundirlo con orden de reacción, solamente en una reacción elemental ambos conceptos coinciden

ACTIVIDAD II:  Molecularidad


 Según la teoría de colisiones para que tenga lugar una reacción química es necesario:
  • Energía suficiente para que se rompan los enlaces entre átomos de reactivos. La energía mínima necesaria para que se produzca la reacción se denomina energía de activación.
  • Orientación adecuada para que, al romperse los enlaces, los átomos libres se puedan unir de la manera que requiere la formación de productos
ACTIVIDAD III: Teoría de colisiones

Segun la teoría  del complejo activado:
Las moléculas que intervienen en una reacción chocan y se se forma un estado intermedio de transición de alta energía y que dura muy poco tiempo y no es aislable. Este estado intermedio se conoce complejo activado.
La energía necesaria para que se forme el compleajo activado es la energía de activación.
ACTIVIDAD IV: Teoría del complejo activado

Una ecuación química es la representación escrita y abreviada de una reacción química. Ajustar una reacción química consiste en asignar a cada fórmula un coeficiente para que haya el mismo número de átomos de cada elemento en ambos miembros.

ACTIVIDAD V: Ajuste de reacciones
ACTIVIDAD VI: Ajuste de reacciones II
ACTIVIDAD VII: Ajuste de reacciones III
ACTIVIDAD VIII: Ajuste de reacciones IV

La velocidad de reacción es la rapidez con la que se combinan los reactivos o la rapidez con la que se forman los productos, la velocidad de reacción depende de diversos factores como son la temperatura, la concentración de los reactivos, el grado de división de los reactivos sólidos y la presencia de catalizadores.

ACTIVIDAD IX: Velocidad de reacción y factores de los que depende
ACTIVIDAD X: Factores de los que depende la velocidad de reacción 


En los siguientes vídeos se puede ver con ejemplos el estudio cualitativo de la velocidad de reacción y los factores que influyen en ella, así como la importancia biológica e industrial de los catalizadores, como se puede apreciar en las siguientes simulaciones:
SIMULACIÓN I: Catalizador en estado sólido
SIMULACIÓN II: Hidrogenación catalítica
SIMULACIÓN III: Catálisis enzimática

En una reacción química, siempre tiene lugar un intercambio de energía entre las sustancias que intervienen y el medio en el que se encuentran. Según sea el sentido del intercambio de energía estas pueden ser:
  • Reacciones endotérmicas tienen lugar con absorción de energía en forma de calor.
  • Reacciones exotérmicas transcurren con desprendimiento de energía en forma de calor.

Si conocemos la masa y el volumen de algunos de los reactivos o productos de reacción, podremos calcular la masa y el volumen de las demás sustancias de la reacción. Para obtener esta información cuantitativa, efectuamos cálculos estequimétricos, que resolveremos aplicando factores de conversión.

ACTIVIDAD XII: Cálculos estequiométricos

Recordamos el procedimiento para efectuar cálculos estequimétricos:
  1. Escribimos y ajustamos la ecuación química correspondiente.
  2. Convertimos a moles el dato de partida.
  3. Aplicamos la relación molar entre la sustancia conocida y la que queremos conocer, según los coeficientes de la ecuación química ajustada.
  4. Calculamos la masa o el volumen de la sustancia requerida.

Aprende química con ChemCaper


Desde Recursos Palomeras-Vallecas queremos proponer un juego para aprender Química jugando con tu teléfono móvil. Se llama ChemCaper y os ayudará a repasar contenidos de secundaria.

ChemCaper es un juego de rol de fantasía diseñado para que l@s alumn@s se impliquen en el aprendizaje de la Química. Este juego estimula la resolución de problemas y fomenta el pensamiento creativo y la curiosidad por la Química.
ChemCaper es un divertido juego de aventuras de química con conceptos fundamentales de la Química en secundaria. A través de este juego de química, puedes aprender temas de química como: el método científico, las técnicas de separación, los grupos de elementos, las propiedades de los elementos o los tipos de enlace químico.

La Química es belleza y también se aprende jugando...


Elementos, compuestos y mezclas



Materia es todo aquello que ocupa un lugar en el espacio y tiene masa. Un tipo concreto de materia es una sustancia.




Podemos clasificar la materia en:
  • Sustancia pura es aquella materia homogénea que tiene una composición química definida en toda su extensión y se puede identificar por una serie de propiedades características. Las sustancias puras se clasifican, a su vez, en elementos y compuestos:
    • Un elemento químico es una sustancia pura que no puede descomponerse en otras más simples.
    • Un compuesto químico es una sustancia pura que, mediante procesos químicos, puede descomponerse en otras más simples.
  • Una mezcla es un sustancia material de composición variable,formado por dos o más sustancias puras que pueden separarse utilizando procedimientos físicos. Las mezclas se clasifican en mezclas heterogéneas y mezclas homogéneas o disoluciones:
    • Una mezcla heterogénea es aquella en la que pueden distinguirse sus componentes a simple vista o con el microscopio óptico. Distinguimos las dispersiones coloidales y las suspensiones.
    • Una mezcla homogénea o disolución es aquella en la que no es posible distinguir sus componentes a simple vista o con el microscopio óptico.
      ACTIVIDAD III: Repasa las mezclas
Las técnicas de separación de mezclas más importantes son la filtración, la decantación, la extracción, la cristalización, la destilación y la cromatografía.
Los componentes de una disolución reciben el nombre de:
  • Soluto. Es la sustancia que se disuelve y es el componente que se encuentra en menor proporción.
  • Disolvente. Es la sustancia que disuelve al soluto y es el componente que se encuentra en mayor proporción.

Una disolución saturada es aquella que, a una temperatura determinada, ya no admite más soluto. Observa este vídeo sobre los tipos de disoluciones.


La concentración de una disolución expresa, de forma numérica, la cantidad de soluto que hay en una determinada cantidad de disolución. 
Se puede dar la concentración en masa% en masa y % en volumen.
ACTIVIDAD VI: Conoce las disoluciones
 ACTIVIDAD VII: Repasa las disoluciones

La solubilidad de una sustancia en un disolvente es la máxima cantidad de soluto que puede disolverse en una cierta cantidad de disolvente a una determinada temperatura.
ACTIVIDAD VIII: ¿Qué es la solubilidad?
ACTIVIDAD IX: Curvas de solubilidad

Repasa el tema en los siguientes sitios webs: Princast y FyQ en Flash

Liga de videojuegos IESports



Los equipos del IES Palomeras-Vallecas ya están preparados para competir con los compañeros de los otros Centros en la primera liga de Institutos IESPORT en su tercera temporada compitiendo con Centros de toda España.
Con la ayuda de los videojuegos van a aprender a relacionarse, expresarse y a trabajar en equipo para alcanzar objetivos comunes.  Mediante el juego se establecen valores como la responsabilidad, respeto e integración.


A través del juego reciben pautas morales para una convivencia orientada en principios y valores humanos. Nuestra competición entre Institutos gira entorno a 16 valores ofreciendo a los alumnos un escenario idóneo para llevarlos a la práctica, descubrirlos e integrarlos en su estilo de vida.
Representa los valores de nuestra competición donde quiera que vayas y harás del mundo un lugar mejor.
En esta ocasión contamos con 2 equipos de alumnos del grupo de  3.1 ESO que representan al IES Palomeras-Vallecas en la competición de Clash Royale, el equipo Palomeras-Vallecas CR formado por Diego Alejandro, Ovi y Alejandro y el equipo Vallecas-Palomeras CR formado por Luis Enrique, Javier y Adrián. A todos ellos les deseamos que compitan con honestidad, deportividad, respeto, compañerismo y valor...


Las disoluciones




Los componentes de una disolución reciben el nombre de:
  • Soluto. Es la sustancia que se disuelve y es el componente que se encuentra en menor proporción.
  • Disolvente. Es la sustancia que disuelve al soluto y es el componente que se encuentra en mayor proporción.

Una disolución saturada es aquella que, a una temperatura determinada, ya no admite más soluto. Observa este vídeo sobre los tipos de disoluciones.


La concentración de una disolución expresa, de forma numérica, la cantidad de soluto que hay en una determinada cantidad de disolución. 
Se puede dar la concentración en masa% en masa y  % en volumen
ACTIVIDAD II: Conoce las disoluciones
 ACTIVIDAD III: Repasa las disoluciones

La solubilidad de una sustancia en un disolvente es la máxima cantidad de soluto que puede disolverse en una cierta cantidad de disolvente a una determinada temperatura.


Leyes de los gases



Las leyes de los gases son las siguientes:
  • Ley de Boyle y Mariotte indica que: "El producto de la presión y el volumen de un gas siempre es constante para una temperatura constante"
  • Ley de Charles indica que: " El volumen que ocupa un gas es directamente proporcional a la temperatura absoluta a la que se encuentra, siempre que la presión sea constante".
  • Ley de Gay-Lussac indica que: "La presión que ejerce un gas es directamente a la temperatura absoluta a la que se encuentra, siempre que el volumen sea constante"
  • Ley de Avogadro afirma que: "Un mol de un gas ocupa siempre el mismo volumen que un mol de cualquier otro gas que se encuentre en las mismas condiciones de presión y temperatura". El volumen que ocupa un mol de cualquier gas, en condiciones normales, es de 22,4 L.
 Todas estas leyes las puedes repasar en el siguiente vídeo:


Con estas simulaciones te familiarizaras con las leyes de los gases:


Calendario científico escolar 2020




El proyecto “Calendario Científico Escolar 2020” ha consistido en la elaboración de un calendario dirigido al alumnado de educación primaria y secundaria obligatoria. Cada día se ha recogido un aniversario científico o tecnológico como, por ejemplo, nacimientos de personas de estos ámbitos o conmemoraciones de hallazgos destacables. Además, el calendario se acompaña de una guía didáctica con orientaciones para el aprovechamiento educativo transversal del calendario en las clases, incluyendo actividades adaptadas a cada rango de edad.

El calendario y las guías están disponibles en abierto para descarga gratuita en la página web del IGM y también se han impreso 3500 copias para su difusión en centros educativos. Para favorecer la utilización en las aulas, nos hemos adaptado a la realidad lingüística de nuestro país, traduciendo el material a las lenguas utilizadas en las clases en cada comunidad autónoma (castellano, gallego, euskera, catalán y asturiano).

Esta iniciativa pretende contribuir a acercar la cultura científica a la población más joven (primaria y ESO) y crear referentes lo más cercanos posibles para ellos. Por ello, se ha hecho un esfuerzo mayor en dar a conocer personas y hallazgos del presente que constituyan referencias para los jóvenes y, al mismo tiempo, den una visión de dinamismo y actualidad. Se ha prestado especial atención al fomento de un lenguaje no sexista y al aumento de la visibilidad de las mujeres científicas y tecnólogas, para poner a disposición modelos referentes que promuevan las vocaciones científico-técnicas entre las niñas y adolescentes. También se ha puesto un énfasis particular en divulgar la actividad investigadora de los centros públicos españoles.


También lo puedes descargar en asturiano, catalán, gallego y vasco en este enlace:

Presión, volumen y temperatura





















La temperatura está relacionada con la energía interior de los sistemas, de acuerdo al movimiento de sus partículas, y cuantifica la actividad de las moléculas de la materia: a mayor energía sensible, más temperatura. La temperatura se mide con un termómetro y su unidad en el Sistema Internacional se mide en una unidad fundamental que se denomina Kelvin (K).

ACTIVIDAD I: Concepto de Temperatura
ACTIVIDAD II: Escalas de Temperatura

El volumen es el espacio que ocupa un cuerpo. La unidad de volumen en el Sistema Internacional es una magnitud derivada que se denomina metro cúbico (m3)

ACTIVIDAD III: Concepto de Volumen

La presión relaciona la fuerza con la superficie sobre la cual actúa, es decir, equivale a la fuerza que actúa sobre la superficie. La presión se mide con un barómetro y en el Sistema Internacional, la presión se mide en una unidad derivada que se denomina pascal (Pa)

ACTIVIDAD IV: Concepto de Presión

Brillando en la oscuridad

En este proyecto los alumnos de 1º de Bachillerato (Grupo 1.1) del  IES Palomeras-Vallecas junto con otros dos Institutos de Madrid como son el  IES Cervantes IES Santa Teresa de Jesús conocen y ponen en valor a lo largo del curso académico 2020/2021 la labor y la importancia de las Mujeres en el mundo científico y su evolución en el tiempo, dicha importancia también se extenderá a la visión particular de los compañeros del ISISS Giovanni Battista Novelli de Marcianise y IISS Leonardo da Vinci de Arzignano (Italia). En este proyecto eTwinning, tenemos los siguientes objetivos:

  • Promover entre nuestros alumnos la inclusión de la perspectiva de género como categoría transversal en la ciencia, la tecnología y la innovación, así como una presencia equilibrada de mujeres y hombres en todos los ámbitos del Sistema Español de Ciencia, Tecnología e Innovación.
  • Fomentar las vocaciones científicas entre nuestros alumnos, principalmente entre nuestras alumnas.
  • Valorar la colaboración entre los estudiantes con las materias de Ciencias que se imparten en sus Centros.
  • Conseguir un entorno virtual de aprendizaje colaborativo entre alumnos, en el que se exista conciencia de pertenencia a un grupo y se establezcan lazos de solidaridad y trabajo en equipo entre los IES Cervantes, IES Palomeras-Vallecas, ISISS Giovanni Battista Novelli, IISS Leonardo da Vinci e IES Santa Teresa de Jesús.
  • Fomentar el uso del castellano como lengua de comunicación en Europa.
  • Mejorar las competencias clave utilizando las TIC, respetando los derechos de autor y la protección de datos.
Si quieres conocer nuestro proyecto y  en todo lo que colaboramos, visita su Twinspace...

La naturaleza y la materia



La materia tiene como propiedades generales la masa y el volumen, todos los cuerpos independientemente del estado de agregación tienen una masa y ocupan un volumen.
                                        ACTIVIDAD I: Relación entre la masa y el volumen

Los principales estados de agregación de la materia son tres; sólido líquido y gaseoso.
Los sólidos tienen forma y volumen constantes, los líquidos se caracterizan por tener volumen constante y forma variable y los gases tienen forma y volumen variable.


El modelo cinético-molecular de la materia se basa en que la materia es discontinua, sus partículas están en movimiento debido a dos clases de fuerzas: de cohesión y de repulsión.
El modelo cinético-molecular permite describir los tres estados de la materia. 

Mediante este modelo se puede justificar las leyes sobre los gases de Boyle-Mariotte y de Gay-Lussac.

Los cambios de estado se denominan: fusión (paso de sólido a líquido), solidificación (de líquido a sólido), vaporización (de líquido a gas), condensación (de gas a líquido), sublimación (de sólido a gas) y sublimación inversa (de gas a sólido).

Todas las sustancias puras tienen una gráfica de calentamiento o de enfriamiento características.
La temperatura o punto de fusión de una sustancia es la temperatura a la que se produce el cambio de estado de sólido a líquido en toda la masa del sólido.
La temperatura o punto de ebullición de una sutancia es la temperatura a la que se produce el cambio de estado de líquido a gas en toda la masa del líquido.
El calor latente es la energía requerida por una cantidad de sustancia para cambiar del estado sólido al líquido (calor latente de fusión) o de líquido a gaseoso (calor latente de vaporización).

Fuerzas intermoleculares



Las fuerzas que tienden a unir las moléculas de compuestos covalentes se denominan fuerzas intermoleculares


Como las moléculas covalentes pueden ser polares y apolares a estas fuerzas se las clasifica de la siguiente manera:
  • Fuerzas dipolo-dipolo (moléculas polares)
  • Fuerzas de London (moléculas apolares o dipolos instantáneos)
  • Enlace de hidrógeno (moléculas con atómos de hidrógeno unidos a atómos de fluor, oxígeno o nitrógeno)
ACTIVIDAD II: Vídeo de fuerzas de Van der Waals
ACTIVIDAD III: Vídeo de enlace de hidrógeno
ACTIVIDAD IV: Resumen de las fuerzas intermoleculares I
ACTIVIDAD V: Resumen de las fuerzas intermoleculares II

Enlace metálico


Un enlace metálico es un enlace químico que mantiene unidos los átomos de los metales entre sí.  Existe la unión entre núcleos atómicos y los electrones de valencia, que se juntan alrededor de éstos núcleo atómicos y forman la nube electrónica En el enlace metálico todos los átomos comparten los electrones del nivel más externo, dando lagar a redes cristalinas metálicas. 

Los compuestos metálicos se ordenan redes tridimensionales, ocupando posiciones de equilibrio en los vértices de determinadas formas geométricas. Los metales de uso industrial más frecuente cristalizan en tres redes que son:
  • Red cúbica centrada en el cuerpo, con una coordinación de 8 como el litio o sodio.
  • Red cúbica de caras centradas, con una coordinación de 12 como el oro, aluminio o plomo.
  • Red hexagonal compacta, con una coordinación de 12 como magnesio, cinc o cadmio.
ACTIVIDAD IV: Redes metálicas
ACTIVIDAD V: Construye redes metálicas

Para explicar el enlace metálico se utilizan dos modelos:
  • Modelo del mar de electrones, en el que se afirma que los electrones de valencia no pertenecen a los átomos del metal, sino que todos ellos forman lo que se conoce como "mar de electrones", estando deslocalizados por toda la red y siendo comunes al conjunto de átomos que la forman.
  • Modelo de bandas, según el cual se describe la estructura electrónica del metal como una estructura de bandas electrónicas, o simplemente estructura de bandas de energía, debidas al solapamiento de los orbitales atómicos. Existiendo dos bandas una de valencia ocupada por los electrones de valencia de los átomos, es decir, aquellos electrones que se encuentran en la última capa o nivel energético de los átomos y otra banda de conducción que está ocupada por los electrones libres, es decir, aquellos que se han desligado de sus átomos y pueden moverse fácilmente. Estos electrones son los responsables de conducir la corriente eléctrica y en función de la distancia entre las capas de valencia y conducción se pueden clasificar los materiales como conductores, semiconductores o aislantes.

ACTIVIDAD VI: Vídeo del modelo de mar de electrones
ACTIVIDAD VII: Modelo de la teoría de bandas

Los metales son todos, salvo el mercurio, sólidos a temperatura ambiente, tienen alta conductividad térmica y eléctrica, poseen brillo metálico, son dúctiles y maleables y emiten electrones por efecto del calor y la luz.

ACTIVIDAD VIII: Resumen de las propiedades del enlace metálico

Este vídeo y las actividades siguientes te pueden servir para repasar el enlace metálico:


ACTIVIDAD IX: Repasa el enlace metálico I
ACTIVIDAD X: Repasa el enlace metálico II
ACTIVIDAD XI: Preguntas sobre enlace metálico