Mujer, Ingeniería y Tecnología


Desde Recursos Palomeras-Vallecas volvemos a recordar que en el conjunto de los estudios universitarios el número de alumnas supera al de alumnos, excepto en ingeniería y arquitectura que representan tan solo una cuarta parte. En este vídeo del programa Lab24 nos encanta escuchar las reflexiones de Sara Gómez, Anna Sánchez y María Villarroya y os recomendamos que lo veáis. 

En este vídeo Sara Gómez, Doctora Ingeniera por la UPM, profesora e investigadora en el área de Mecánica de los Medios Continuos y Teoría de Estructuras y Consejera de la RAI; Anna Sánchez, Ingeniera de Telecomunicaciones (UPC), Doctora en Organización y Administración de Empresas y CEO de la empresa Itimes Advisers; y María Villarroya, Doctora en Ingeniería Electrónica y profesora del área de Arquitectura y Tecnología de Computadores en la Universidad de Zaragoza, analizan claramente por qué hay menos presencia de mujeres en las carreras técnicas.

Nunca debemos olvidar que la mujer esté más presente en profesiones tecnológicas es una cuestión social que nos afecta a todos, tanto más cuándo la sociedad española necesitará muchos ingenieros e ingenieras en los próximos años.

Juego "Mujeres en Ciencia"



El juego de cartas Women in science presenta a 44 científicas de disciplinas variadas. La baraja –una idea de Anouk Charles y Benoît Fries– está compuesta por 52 cartas dibujadas por el artista Francis Collie.

Jugando con esta singular baraja, se puede aprender sobre las aportaciones de estas mujeres, algunas de ellas muy poco conocidas. Además, este juego pretende ofrecer modelos tanto a chicas como a chicos, para que se animen a estudiar carreras de ciencias.

Reglas del juego

El objetivo del juego es reunir cuatro cartas del mismo color para formar un laboratorio. La primera persona que forma tres laboratorios, gana la partida. Cada jugador o jugadora recibe seis cartas. Se coloca el mazo (boca abajo) en el centro de la mesa y una primera carta boca arriba.

En cada turno, el jugador o jugadora decide coger la primera carta del mazo o la situada boca arriba, y se desprende de una carta, dejándola boca arriba en el montón de descarte.

Algunas cartas tienen dos colores y pueden usarse para construir laboratorios de cualquiera de los dos colores. La carta reclutamiento permite a un jugador o jugadora coger cualquier personaje del montón de descarte. La carta prestigio permite robar dos personajes de un laboratorio adversario (se destruye el laboratorio y los personajes restantes se reenvian a la mano de su propietario). La carta "clon" permite a un jugador o jugadora hacer una copia de un personaje que posee; se sitúa junto a la carta con el personaje calcado cuando se forma un laboratorio, y no pueden separarse hasta el final de la partida.

Al final de cada turno, cada jugador o jugadora sólo puede tener seis cartas en la mano, dejando las sobrantes en el montón de descarte.

Cuando se terminan las cartas del mazo en el turno de una persona, queda eliminada de la partida; sus cartas y sus laboratorios se barajan junto a las cartas del montón de descarte para formar un nuevo mazo, y el proceso vuelve a comenzar.

Para conocer más sobre el Juego de Cartas visita: MUJERES CON CIENCIA


Esta baraja se puede adquirir en inglés, Women in science,  y en francés ,Femmes de science.
En este enlace (cartas en francés) o este enlace (cartas en inglés) se puede solicitar el envío ,gratuito, de un fichero pdf para imprimir la baraja completa.

Formulación y nomenclatura 2º y 3º ESO




Para representar una sustancia química utilizaremos la fórmula química que nos indicará los tipos de átomos que la forman así como el número o proporción de estos átomos en dicha sustancia. 
El objetivo de la formulación y nomenclatura química es que a partir del nombre de un compuesto sepamos cuál es su fórmula y a partir de una fórmula sepamos cuál es su nombre. Antiguamente esto no era tan fácil, pero gracias a las normas de la I.U.P.A.C. la formulación puede llegar a ser incluso entretenida. 

Cuando estudiamos las configuraciones electrónicas de los átomos vimos que los electrones de la capa de valencia tenían una importancia especial ya que eran los que participaban en la formación de los enlaces y en las reacciones químicas. También vimos que los gases nobles tenían gran estabilidad, y eso lo achacábamos a que tenían las capas electrónicas completas. Pues bien, tener las capas electrónicas completas será la situación a que tiendan la mayoría de los átomos a la hora de formar enlaces, o lo que es lo mismo a la hora de formar compuestos.








Os dejo estos enlaces para ampliar Nomenclatura y Formulación

Trabajo y energía



El Principio de conservación de la energía indica que la energía no se crea ni se destruye; sólo se transforma de unas formas en otras. En estas transformaciones, la energía total permanece constante; es decir, la energía total es la misma antes y después de cada transformación.

En el caso de la energía mecánica se puede concluir que, en ausencia de rozamientos y sin intervención de ningún trabajo externo, la suma de las energías cinética y potencial permanece constante. Este fenómeno se conoce con el nombre de Principio de conservación de la energía mecánica.

Como la energía mecánica es igual a la suma de la energía cinética y la energía potencial gravitatoria que posee un cuerpo, la única forma de mantenerse constante es que:
  • Cuando la energía cinética aumenta la energía potencial gravitatoria disminuye,
  • Cuando la energía potencial gravitatoria aumenta la energía cinética disminuye.

Visita al Museo del Traje y Faro de Moncloa


El 13 de enero l@s alumn@s del grupo 2.2  ESO realizaron una visita extraescolar al Museo del Traje y al Faro de Moncloa organizada por su extraordinaria profesora de Dibujo Teresa, fueron unas visitas muy instructivas y adecuadas en la que todos acabamos muy satisfech@s.





El Museo del Traje se encuentra en la Avenida Juan de Herrera, 2, en el corazón de la Ciudad Universitaria de Madrid y en dicho Museo durante casi dos horas pudimos hacer un recorrido por nuestra historia a través de los trajes de época, si quieres recordar la visita aquí tienes una visita virtual.





La Misión del Museo del Traje es conservar, proteger y promover las colecciones de indumentaria y moda que custodia, así como todo el conocimiento, directo o transversal, que se desprende de ellas, proporcionando a sus visitantes actividades basadas en la solidez discursiva accesible, a los estudiantes de moda un lugar de intercambio de conocimientos y a los profesionales del sector un punto de encuentro y desarrollo. En el Museo del Traje se nos mostró de manera destacada la evolución histórica de la indumentaria, analizando sus implicaciones técnicas, sociales, ideológicas y creativas a través de la diversidad y el continuo cambio de las prácticas del vestir, y reuniendo para ello las muestras materiales y elementos informativos necesarios, desde las más remotas épocas que puedan documentarse hasta una actualidad que debe ser permanente y llevarle a ser cronista de la evolución y los logros del diseño de moda contemporáneo.






Pasada la visita del Museo del Traje y después de un período de descanso para reponer fuerzas caminamos durante diez minutos hasta el Faro de Moncloa, desde lo alto pudimos las preciosas vistas de Madrid y se realizó una gincana de reconocimiento de los lugares de nuestra ciudad. Nos hicimos unas fotos espectaculares y disfrutamos de la belleza de nuestra ciudad desde el cielo, como se muestra en este vídeo...


GALERÍA DE IMÁGENES 


Fue una jornada espectacular en la que tod@s disfrutamos mucho...

Determinación de la fórmula de una sal hidratada



El agua de cristalización es el agua que se encuentra dentro de las redes de los cristales pero que no se halla unida de manera covalente a ninguna molécula o ion. Es un término arcaico que precede a la química inorgánica estructural moderna, y que proviene de una época en la que las relaciones entre fórmula mínima y estructura eran poco comprendidas. Sin embargo, el término ha permanecido en el tiempo, y cuando se emplea de manera precisa puede resultar muy útil.

El sulfato de cobre (II), también llamado sulfato cúprico, vitriolo azul, piedra azul, caparrosa azul,vitriolo romano o calcantita es un compuesto químico derivado del cobre que forma cristales azules, solubles en agua y metanol y ligeramente solubles en alcohol y glicerina. Su forma anhídrida es un polvo verde o gris-blanco pálido, mientras que la forma hidratada es azul brillante.

Enlace para ver la estructura de:

Análisis cualitativo de cationes a la llama


Un análisis químico es un conjunto de técnicas y procedimientos empleados para identificar y cuantificar la composición química de una sustancia. En un análisis cualitativo se pretende identificar las sustancias de una muestra. En el análisis cuantitativo lo que se busca es determinar la cantidad o concentración en que se encuentra una sustancia específica en una muestra. Por ejemplo, averiguar si una muestra de sal contiene el elemento yodo sería un análisis cualitativo, y medir el porcentaje en masa de yodo de esa muestra constituiría un análisis cuantitativo. En esta práctica vamos a hacer un análisis cualitativo. Tendrá dos partes el ensayo a la llama y la marcha analítica:

El ensayo a la llama es un proceso analítico usado en química para detectar la presencia de ciertos elementos, principalmente iones de metales, basado en el espectro de emisión característico a cada elemento. El color de la llama también puede depender de la temperatura.


Calendario Científico Escolar 2022




La tercera edición de esta publicación es fruto del Instituto de Ganadería de Montaña (IGM), centro mixto del Consejo Superior de Investigaciones Científicas (CSIC) y la Universidad de León, y ha vuelto a contar con la colaboración de un amplio número de profesionales de educación y de otras personas voluntarias en la búsqueda de aniversarios y el diseño de actividades complementarias. Dirigido fundamentalmente al alumnado de Primaria y ESO, el calendario está acompañado de una guía didáctica con actividades que pueden ser adaptadas a distintos rangos de edad y asignaturas, así como por una cuenta de Twitter (@CalCientifico) que publica las efemérides diarias.


El "Calendario Científico Escolar 2022" está dirigido principalmente al alumnado de educación primaria y secundaria obligatoria. Cada día se ha recogido un aniversario científico o tecnológico como, por ejemplo, nacimientos de personas de estos ámbitos o conmemoraciones de hallazgos destacables.

Tabla periódica de la poesía española

Pincha en la tabla para ampliarla

Desde Recursos Palomeras-Vallecas queremos felicitar a Rafael Herrera Ángel por su excelente trabajo recopilatorio al hacer la 1º Tabla periódica de la poesía española.
Como tod@s sabéis nos gustan las tablas periódicas, nos encanta la poesía, disfrutamos con la lectura y adoramos la lengua castellana.

  "La Vida y Un Poema" también agradece a Rafael su magnífica obra y os recuerda a tod@s la frase:

"Solamente hay dos tipos de personas en la vida, 
los que se saben la tabla periódica y los que no"

La tabla periódica





Los elementos químicos aparecen clasificados en orden creciente de número atómico en la Tabla Periódica distribuidos a lo largo de 18 columnas o grupos y 7 filas o períodos. En cada grupo se colocan elementos con propiedades similares y en cada período se van colocando los elementos en orden creciente de número atómico.

ACTIVIDAD I:  Tabla periódica interactiva muy útil
ACTIVIDAD II: Elige tu Tabla Periódica favorita
ACTIVIDAD III: Juega al tetris con la Tabla Periódica


Recuerda:
"Solamente hay dos tipos de personas, los que se saben la tabla periódica y los que no...."
 


Aprende la tabla periódica es importante:

TABLA PERIÓDICA DE LOS ELEMENTOS

¿Para qué sirve cada elemento químico?




Cuando el neurólogo Oliver Sacks tenía apenas diez años comenzó a coleccionar elementos de la tabla periódica. Muy pronto comenzó a pedir como regalo de cumpleaños el elemento que correspondiera a los años vividos. El último que recibió fue plomo, el elemento 82. “Bismuto es el elemento 83. No creo que llegue a ver mi 83 cumpleaños – aseguraba en un editorial en el New York Times– (…) Y casi seguro no veré mi 84 polonio aniversario, ni quiero tener polonio a mi alrededor, con su intenso brillo asesino”.

Sacks nunca llegó a su elemento 83 y se quedó lejos de completar la tabla periódica con sus 118 miembros de la familia química. Pese a ello, su iniciativa provocó un interés nuevo entre el público general y la química. Comenzamos a interesarnos por saber para qué sirve cada elemento más allá del litio de las baterías, el flúor en la pasta de dientes, el helio de los globos o el potasio de los plátanos. Pero hay vida más allá del elemento 70. Con esto en mente Keith Enevoldsen ha creado una tabla periódica interactiva que revela el uso cotidiano de elementos tan poco mencionados habitualmente como el osmio, el hafnio o el prometio. 

Existe también una versión lista para descargar en formato pdf.

De los 118 elementos solo falta el uso cotidiano de 15, elementos con una vida de apenas microsegundos que solo se utilizan en investigación, como los recientemente descubiertos, como el moscovio, oganesón o tenesino.

Fuente: http://www.quo.es/ciencia

Mapa de la Física



Este mapa de Dominic Walliman es genial y ha sido traducido al castellano por Mola Saber, en el puedes ver toda la Física de un vistazo. Para verlo más grande pincha aquí.

Cómo puede verse, se ha dividido la física conocida en tres grandes áreas bien diferenciadas: física clásica, física cuántica y relatividad. Si te interesa bucear un poco más en la magnitud que supone esta imagen, deberías visitar el vídeo que el autor ha subido a su canal y donde explica por qué este mapa de la física es como es.

DESCARGA EL MAPA DE LA FÍSICA