eTwinning en el Colegio Timón


DESCARGA LA PRESENTACIÓN
PRESENTACIÓN INTERNACIONALIZACIÓN DE ESCUELAS


Evolución del Encuentro eTwinning:

1. Presentación y conocimientos básicos
2. Reflexiones sobre eTwinning de los participantes
3. Herramientas TIC para realización de proyectos 
4.  EJEMPLO DE EXPERIENCIA
5. Ejemplos de proyectos eTwinning Infantil / Primaria 
6. Realización del Kahoot eTwinning ENLACE KAHOOT
7. Consejos para realización de un buen Twinspace. VER CONSEJOS
8. Valores de la escuela eTwinning.  Juega a la escuela eTwinning es...
9. Reconocimiento de la Comunidad de Madrid eTwinning-Erasmus

Juego la escuela eTwinning es...






ACTIVIDADES COLABORATIVAS
  • Indica el tipo de proyecto eTwinning que te gustaría hacer enTricider
  • Sigue la historia colaborando en: Meeting Words
  • Aporta algo al dibujo colaborativo en: Colorillo
  • Indica algunas palabras que te inspire eTwinning en: Mentimeter  /  Resultados
  • Escribe tu nombre, el enlace una herramienta TIC que te resulta interesante y en: Padlet





Nikola Tesla: "El genio de la electricidad moderna"


Los días 7 y 21 de octubre l@s alumn@s de los grupos BCT11 y BCT12 asistieron a la exposición Nikola Tesla. "El genio de la electricidad Moderna", en dicha exposición descubrieron la vida y la obra del genial Nikola Tesla. Tesla es mucho más que uno de los mayores inventores de la historia: es el fundador de la tecnología moderna, una figura clave en la historia de la ciencia. En las últimas décadas, Tesla se ha convertido en un icono popular, el paradigma del inventor genial sin perspicacia alguna para los negocios.




GALERÍA DE IMÁGENES


Nikola Tesla ha sido admirado y odiado a partes iguales porque su forma de ser y trabajar no pasaba indiferente para nadie. Este genio fue plagiado e injustamente tratado por algunos de sus contemporáneos, el tiempo ha acabado dándole la razón en muchos aspectos. Si a todo esto le sumamos una personalidad cautivadora y una vida fascinante, al tiempo que azarosa, tenemos todos los ingredientes para que Tesla haya acabado convirtiéndose en un personaje rodeado de una aureola de leyenda. En el imaginario colectivo, siempre será el arquetipo de genio romántico tan característico de las novelas de aventuras del siglo XIX.






Fue una buena experiencia para finalizar una semana de clases en 1º de Bachillerato y esperemos que la curiosidad por la vida e invenciones de Nikola Tesla haya surgido entre nuestr@s alumn@s.

"Si quieres descubrir los secretos del universo, 
piensa en términos de energía, frecuencia y vibración"


Formulación y nomenclatura inorgánica



Para representar una sustancia química utilizaremos la fórmula química que nos indicará los tipos de átomos que la forman así como el número o proporción de estos átomos en dicha sustancia. 
El objetivo de la formulación y nomenclatura química es que a partir del nombre de un compuesto sepamos cuál es su fórmula y a partir de una fórmula sepamos cuál es su nombre. Antiguamente esto no era tan fácil, pero gracias a las normas de la I.U.P.A.C. la formulación puede llegar a ser incluso entretenida. 

Cuando estudiamos las configuraciones electrónicas de los átomos vimos que los electrones de la capa de valencia tenían una importancia especial ya que eran los que participaban en la formación de los enlaces y en las reacciones químicas. También vimos que los gases nobles tenían gran estabilidad, y eso lo achacábamos a que tenían las capas electrónicas completas. Pues bien, tener las capas electrónicas completas será la situación a que tiendan la mayoría de los átomos a la hora de formar enlaces, o lo que es lo mismo a la hora de formar compuestos.



Vídeo explicativo de la formulación de oxoácidos:





Si estás preparando en 2º de Bachillerato y preparas la EVAU es recomendable que veas la información relacionada con formulación inorgánica que aparece en el Modelo y después realices los ejercicios que te proponemos:

La naturaleza y la materia



La materia tiene como propiedades generales la masa y el volumen, todos los cuerpos independientemente del estado de agregación tienen una masa y ocupan un volumen.
                                        ACTIVIDAD I: Relación entre la masa y el volumen

Los principales estados de agregación de la materia son tres; sólido líquido y gaseoso.
Los sólidos tienen forma y volumen constantes, los líquidos se caracterizan por tener volumen constante y forma variable y los gases tienen forma y volumen variable.


El modelo cinético-molecular de la materia se basa en que la materia es discontinua, sus partículas están en movimiento debido a dos clases de fuerzas: de cohesión y de repulsión.
El modelo cinético-molecular permite describir los tres estados de la materia. 

Mediante este modelo se puede justificar las leyes sobre los gases de Boyle-Mariotte y de Gay-Lussac.

Los cambios de estado se denominan: fusión (paso de sólido a líquido), solidificación (de líquido a sólido), vaporización (de líquido a gas), condensación (de gas a líquido), sublimación (de sólido a gas) y sublimación inversa (de gas a sólido).

Todas las sustancias puras tienen una gráfica de calentamiento o de enfriamiento características.
La temperatura o punto de fusión de una sustancia es la temperatura a la que se produce el cambio de estado de sólido a líquido en toda la masa del sólido.
La temperatura o punto de ebullición de una sutancia es la temperatura a la que se produce el cambio de estado de líquido a gas en toda la masa del líquido.
El calor latente es la energía requerida por una cantidad de sustancia para cambiar del estado sólido al líquido (calor latente de fusión) o de líquido a gaseoso (calor latente de vaporización).

Fuerzas intermoleculares



Las fuerzas que tienden a unir las moléculas de compuestos covalentes se denominan fuerzas intermoleculares


Como las moléculas covalentes pueden ser polares y apolares a estas fuerzas se las clasifica de la siguiente manera:
  • Fuerzas dipolo-dipolo (moléculas polares)
  • Fuerzas de London (moléculas apolares o dipolos instantáneos)
  • Enlace de hidrógeno (moléculas con atómos de hidrógeno unidos a atómos de fluor, oxígeno o nitrógeno)
ACTIVIDAD II: Vídeo de fuerzas de Van der Waals
ACTIVIDAD III: Vídeo de enlace de hidrógeno
ACTIVIDAD IV: Resumen de las fuerzas intermoleculares I
ACTIVIDAD V: Resumen de las fuerzas intermoleculares II

Enlace metálico


Un enlace metálico es un enlace químico que mantiene unidos los átomos de los metales entre sí.  Existe la unión entre núcleos atómicos y los electrones de valencia, que se juntan alrededor de éstos núcleo atómicos y forman la nube electrónica En el enlace metálico todos los átomos comparten los electrones del nivel más externo, dando lagar a redes cristalinas metálicas. 

Los compuestos metálicos se ordenan redes tridimensionales, ocupando posiciones de equilibrio en los vértices de determinadas formas geométricas. Los metales de uso industrial más frecuente cristalizan en tres redes que son:
  • Red cúbica centrada en el cuerpo, con una coordinación de 8 como el litio o sodio.
  • Red cúbica de caras centradas, con una coordinación de 12 como el oro, aluminio o plomo.
  • Red hexagonal compacta, con una coordinación de 12 como magnesio, cinc o cadmio.
ACTIVIDAD IV: Redes metálicas
ACTIVIDAD V: Construye redes metálicas

Para explicar el enlace metálico se utilizan dos modelos:
  • Modelo del mar de electrones, en el que se afirma que los electrones de valencia no pertenecen a los átomos del metal, sino que todos ellos forman lo que se conoce como "mar de electrones", estando deslocalizados por toda la red y siendo comunes al conjunto de átomos que la forman.
  • Modelo de bandas, según el cual se describe la estructura electrónica del metal como una estructura de bandas electrónicas, o simplemente estructura de bandas de energía, debidas al solapamiento de los orbitales atómicos. Existiendo dos bandas una de valencia ocupada por los electrones de valencia de los átomos, es decir, aquellos electrones que se encuentran en la última capa o nivel energético de los átomos y otra banda de conducción que está ocupada por los electrones libres, es decir, aquellos que se han desligado de sus átomos y pueden moverse fácilmente. Estos electrones son los responsables de conducir la corriente eléctrica y en función de la distancia entre las capas de valencia y conducción se pueden clasificar los materiales como conductores, semiconductores o aislantes.

ACTIVIDAD VI: Vídeo del modelo de mar de electrones
ACTIVIDAD VII: Modelo de la teoría de bandas

Los metales son todos, salvo el mercurio, sólidos a temperatura ambiente, tienen alta conductividad térmica y eléctrica, poseen brillo metálico, son dúctiles y maleables y emiten electrones por efecto del calor y la luz.

ACTIVIDAD VIII: Resumen de las propiedades del enlace metálico

Este vídeo y las actividades siguientes te pueden servir para repasar el enlace metálico:


ACTIVIDAD IX: Repasa el enlace metálico I
ACTIVIDAD X: Repasa el enlace metálico II
ACTIVIDAD XI: Preguntas sobre enlace metálico

Enlace covalente




El enlace covalente se produce entre dos átomos cuando estos átomos se unen, para alcanzar el octeto estable, compartiendo electrones del último nivel (excepto el hidrógeno que alcanza la estabilidad cuando tiene 2 electrones). Para generar un enlace covalente es preciso que la diferencia de electronegatividad entre los átomos sea menor a 1,7.
ACTIVIDAD II:  Simulador de moléculas polares y apolares
ACTIVIDAD III: Juega con los enlaces

Denominamos estructura de Lewis al esquema en el que aparecen todos los átomos de la molécula con sus electrones de la última capa y en la que vemos tanto los pares compartidos o enlaces covalentes, como los no compartidos o pares no enlazantes.
Los pasos a seguir son:
  • Realizar la configuración electrónica de los átomos para conocer cuántos electrones de valencia tienen.
  • Saber los enlaces que quiere formar cada uno de los átomos, serán los mismos que electrones le falten para completar el octeto.
  • Dibujar esos pares enlazantes y añadir los pares no enlazantes a cada átomo para que aparezcan todos sus electrones de la última capa.

Las estructuras resonantes son útiles porque permiten representar moléculas, iones y radicales para los cuales resulta inadecuada una sola estructura de Lewis. Se escriben entonces dos o más de dichas estructuras y se les llama estructuras en resonancia o contribuyentes de resonancia.
ACTIVIDAD VI:  La resonancia en química
ACTIVIDAD VII: Resonancia del benceno
ACTIVIDAD VIII: Estructuras resonantes

La teoría de repulsión de pares de electrones de valencia​​, es un modelo usado en química para predecir la forma de las moléculas o iones poliatómicos. Está basado en el grado de repulsión electrostática de los pares de electrones de valencia alrededor del átomo central.
ACTIVIDAD IX: Comparación de las geometrías de varias moléculas
ACTIVIDAD X: Presentación de teoría de repulsiones de la capa de valencia
ACTIVIDAD XI: Vídeo sobre teoría de repulsiones de la capa de valencia
ACTIVIDAD XII: Teoría de repulsiones de la capa de valencia


Para que una molécula sea polar, debe tener átomos con diferente electronegatividad y separación de cargas en la moléculas, con estas dos premisas en la molécula habrá un momento dipolar en la molécula.
ACTIVIDAD XIII: Polaridad de moléculas
ACTIVIDAD XIV: Naturaleza del enlace


La teoría de hibridación de orbitales complementa la teoría de enlace de valencia a la hora de explicar la formación de enlaces covalentes. En concreto, la hibridación es el mecanismo que justifica la distribución espacial de los pares de electrones de valencia. Los tipos de hibridación de orbitales que necesitamos aplicar para justificar la geometría de las moléculas más simples son: sp, sp2 y sp3.
Las ideas básicas del modelo de hibridación son:

  • Un orbital híbrido es una combinación de orbitales atómicos
  • El número de orbitales híbridos que se forman es igual al número de orbitales atómicos que se combinan.
  • Los orbitales híbridos formados tienen la misma forma y una determinada orientación espacial: sp lineal; sp2 triangular plana y sp3 tetraédrica.
  • Los orbitales híbridos disponen de una zona o lóbulo enlazante y otra zona o lóbulo antienlazante; el enlace se produce por el solapamiento del lóbulo enlazante con el otro orbital del átomo a enlazar.
ACTIVIDAD XV: Orbitales híbridos
ACTIVIDAD XVI: Vídeo sobre hibridación de orbitale s atómicos 
ACTIVIDAD XVII: Teoría de hibridación: Formación de enlaces


Los compuestos covalentes  diferenciaremos entre las propiedades de las moléculas y los cristales.
Los compuestos covalentes moleculares:

  • Tienen puntos de fusión y ebullición bajos debido a que las fuerzas entre las moléculas son débiles, siendo mayores cuando aumenta la polaridad.
  •  No conducen la electricidad ya que no hay cargas ni electrones libres.
  • Se disuelven en sustancias con su misma polaridad, es decir, si es apolar en disolventes apolares y en polares cuando sea polar.

Los cristales covalentes :

  • Tienen altos puntos de fusión y ebullición por estar los átomos unidos por enlaces covalentes bastante fuertes.
  • Son insolubles en casi todos los disolventes.
  • No conducen el calor ni la electricidad, a excepción del grafito que dispone de electrones que pueden moverse entre las capas planas. 
ACTIVIDAD XIX: Propiedades de los sólidos covalentes

Este vídeo y las actividades siguientes te pueden servir para repasar la formación y las propiedades del enlace covalente:

ACTIVIDAD XX: Repasa el enlace covalente I
ACTIVIDAD XXI: Repasa el enlace covalente II
ACTIVIDAD XXII: Repasa el enlace covalente III

Enlace iónico


El enlace iónico es el resultado de la fuerzas de atracción electrostática entre iones de distinto signo. 
Un enlace se considera iónico cuando la electronegatividad de los elementos que forman el enlace es superior a 1,8.

ACTIVIDAD II: Juego del enlace iónico

Los compuestos iónicos forman redes cristalinas constituidas por un número enorme de iones de carga opuesta, unidos por fuerzas electrostáticas. Este tipo de atracción determina las propiedades observadas. Si la atracción electrostática es fuerte, se forman sólidos cristalinos de elevado punto de fusión e insolubles en agua; si la atracción es menor, como en el caso del NaCl, el punto de fusión también es menor y, en general, son solubles en agua e insolubles en líquidos apolares, como el benceno.

ACTIVIDAD III: Redes iónicas cristalinas
ACTIVIDAD IV: Redes iónicas
ACTIVIDAD V: Resumen de las propiedades del enlace iónico

La energía de red o energía reticular es la energía que se desprende al fomarse un mol de cristal iónico a partir de los iones que lo componen en estado gaseoso. Para calcular la energía reticular se puede usar la ecuación de Born-Landé

ACTIVIDAD VI: Parámetros de los que depende la energía de red

Mediante el ciclo de Born-Haber es posible calcular el valor de la energía reticular utilizando un camino indirecto basado en la ley de Hess, sin más que sumar los cambios de energía que tienen lugar en el proceso de formación del compuesto iónico.

ACTIVIDAD VII: Vídeo del ciclo de Born-Haber
ACTIVIDAD VIII: Ciclo de Born-Haber
ACTIVIDAD IX: Ejemplos del Ciclo de Born-Haber

Este vídeo y las actividades siguientes te pueden servir para repasar la formación y las propiedades del enlace iónico:

ACTIVIDAD X: Repasa el enlace iónico I
ACTIVIDAD XI: Repasa el enlace iónico II

Enlace Químico: Diagramas de Morse


Las fuerzas que mantienen unidos los átomos se denominan enlaces. Un enlace químico se produce cuando los átomos unidos adquieren un estado de menor energía y por tanto de mayor estabilidad, que cuando los átomos estaban por separado.
Cuando dos átomos están lo suficientemente separados, se puede suponer que no existe influencia mutua entre ellos y que la energía del sistema formado es nula. A medida que se van acercando, se ponen de manifiesto una serie de fuerzas de atracción de sus núcleos sobre las nubes electrónicas de los otros átomos (fuerzas de largo alcance), lo que produce una disminución de la energía del sistema. 
Cuando los átomos se encuentran uno cerca del otro, empiezan a actuar las fuerzas de repulsión entre las nubes electrónicas, estas fuerzas tienen un efecto mayor a corta distancia, entonces el sistema se desestabiliza. 
Ambas situaciones se pueden representar gráficamente mediante curvas de estabilidad, curvas de Morse. Se observa que existe una distancia internuclear en la que el sistema es más estable, siendo máximas las fuerzas de atracción y mínimas las de repulsión, esta distancia se denomina distancia de enlace y corresponde al mínimo de la curva. La energía correspondiente a esta distancia es la que se desprende en la formación del enlace químico.


Los diferentes tipos de enlaces químicos los puedes repasar en el siguiente vídeo y con las siguientes actividades:



ACTIVIDAD II: Tipos de enlaces

Un Sistema Internacional para el Siglo XXI



El actual Sistema Internacional (SI) es el sistema adoptado internacionalmente, utilizado en la práctica científica y el único legal en España, en la Unión Europea y en numerosos otros países. El SI parte de un pequeño número de magnitudes/unidades denominadas básicas definiendo, a partir de ellas, las denominadas derivadas, como producto de potencias de las básicas. Cuando este producto de potencias no incluye ningún factor numérico distinto de la unidad, estas unidades derivadas se denominan coherentes. Así pues, el SI es un sistema coherente de unidades, que permite cuantificar cualquier magnitud medible de interés en la investigación, la industria, el comercio o la sociedad, en campos tan variados como la salud, la seguridad, la protección del medio ambiente, la adquisición de bienes o la facturación de consumos, por ejemplo. 

El SI actual consta de siete unidades básicas, más un amplio grupo de unidades derivadas, junto a un conjunto de prefijos adoptados para denominar los valores de aquellas magnitudes que son mucho más grandes o mucho más pequeñas que la unidad básica, y que van desde el prefijo yocto hasta el prefijo yotta.

Desde Recursos Palomeras-Vallecas nos hacemos eco de la información del Centro Español de Metrología, que nos recuerda que en noviembre de 2018 se revisó las definiciones del  kilogramo, amperio, kelvin y mol  y es probable que esta revisión sea aprobada por la Conferencia General de Pesas y Medidas (CGPM), el organismo internacional responsable de la comparabilidad global de las mediciones. Se espera que las definiciones revisadas entren en vigor el 20 de mayo de 2019

En el SI revisado, el kilogramo, el amperio, el kelvin y el mol se redefinirán en términos de valores numéricos fijos de las siguientes constantes de la naturaleza:
La constante de Planck (h),
La carga elemental (e),
La constante de Boltzmann (k),
La constante de Avogadro (NA), respectivamente.
y heredarán las incertidumbres asociadas a la determinación de dichas constantes.

Todas las definiciones de las unidades, se redactarán de forma distinta a la actual, de manera que las constantes aparezcan en ellas de manera explícita.

El resultado será una definición más coherente y fundamental de todo el SI, prescindiendo de realizaciones prácticas basadas en artefactos materiales, como era el caso hasta ahora del prototipo internacional del kilogramo, con posibilidad de pérdida y fuertes limitaciones de estabilidad a largo plazo, pasando a realizaciones prácticas más exactas, además de reproducibles en cualquier tiempo y lugar.



El Universo a Escala


En "La Escala del Universo 2" podrás sentir literalmente lo pequeños e insignificantes que somos ante el gran tamaño del universo. Desde el planck length (la unidad de escala más pequeña conocida) hasta el universo observable por los telescopios, que es lo más lejos que hemos conocido como humanidad, por ahora.

La simulación interactiva permite hacer un zoom a través de la escala y espacio; el tiempo entre cada desplazamiento nos ayuda a tener idea de la distancia que vamos recorriendo. También podemos comparar el tamaño de lo que vemos con objetos que nos resultan conocidos y reconocibles, además podemos encontrar fragmentos de información de cada elemento cuando hacemos clic sobre los elementos.