Cinética Química

Cinética Química


Una reacción química es un proceso mediante el cual una o varias sustancias iniciales, llamadas reactivos, se transforman en otras distintas a estas, denominadas productos.

ACTIVIDAD: Concepto de reacción química

La cinética química es la rama de la Química que estudia la velocidad de una reacción. En este vídeo vemos como evoluciona la concentración de reactivos y productos en una reacción química y sirve para entender el concepto de velocidad de reacción de química y las ecuaciones cinéticas:




Existe una relación entre las concentraciones de los reactivos y el tiempo diferentes para cada orden de reacción

ACTIVIDAD I: Relación entre la concentración de reactivos y el tiempo

Una secuencia de etapas elementales que da lugar a la reacción global es lo que se conoce como mecanismo de reacción, la etapa limitante de la velocidad de reacción es la etapa más lenta del mecanismo.
Molecularidad es el número de moléculas que intervienen en una reacción y no hay que confundirlo con orden de reacción, solamente en una reacción elemental ambos conceptos coinciden

ACTIVIDAD II:  Molecularidad


 Según la teoría de colisiones para que tenga lugar una reacción química es necesario:
  • Energía suficiente para que se rompan los enlaces entre átomos de reactivos. La energía mínima necesaria para que se produzca la reacción se denomina energía de activación.
  • Orientación adecuada para que, al romperse los enlaces, los átomos libres se puedan unir de la manera que requiere la formación de productos
ACTIVIDAD III: Teoría de colisiones

Segun la teoría  del complejo activado:
Las moléculas que intervienen en una reacción chocan y se se forma un estado intermedio de transición de alta energía y que dura muy poco tiempo y no es aislable. Este estado intermedio se conoce complejo activado.
La energía necesaria para que se forme el compleajo activado es la energía de activación.
ACTIVIDAD IV: Teoría del complejo activado

Una ecuación química es la representación escrita y abreviada de una reacción química. Ajustar una reacción química consiste en asignar a cada fórmula un coeficiente para que haya el mismo número de átomos de cada elemento en ambos miembros.

ACTIVIDAD V: Ajuste de reacciones
ACTIVIDAD VI: Ajuste de reacciones II
ACTIVIDAD VII: Ajuste de reacciones IV

La velocidad de reacción es la rapidez con la que se combinan los reactivos o la rapidez con la que se forman los productos, la velocidad de reacción depende de diversos factores como son la temperatura, la concentración de los reactivos, el grado de división de los reactivos sólidos y la presencia de catalizadores.

ACTIVIDAD VIII: Velocidad de reacción y factores de los que depende
ACTIVIDAD IX: Factores de los que depende la velocidad de reacción 


En los siguientes vídeos se puede ver con ejemplos el estudio cualitativo de la velocidad de reacción y los factores que influyen en ella, así como la importancia biológica e industrial de los catalizadores, como se puede apreciar en las siguientes simulaciones:

En una reacción química, siempre tiene lugar un intercambio de energía entre las sustancias que intervienen y el medio en el que se encuentran. Según sea el sentido del intercambio de energía estas pueden ser:
  • Reacciones endotérmicas tienen lugar con absorción de energía en forma de calor.
  • Reacciones exotérmicas transcurren con desprendimiento de energía en forma de calor.

Si conocemos la masa y el volumen de algunos de los reactivos o productos de reacción, podremos calcular la masa y el volumen de las demás sustancias de la reacción. Para obtener esta información cuantitativa, efectuamos cálculos estequimétricos, que resolveremos aplicando factores de conversión.

ACTIVIDAD XI: Cálculos estequiométricos

Recordamos el procedimiento para efectuar cálculos estequimétricos:
  1. Escribimos y ajustamos la ecuación química correspondiente.
  2. Convertimos a moles el dato de partida.
  3. Aplicamos la relación molar entre la sustancia conocida y la que queremos conocer, según los coeficientes de la ecuación química ajustada.
  4. Calculamos la masa o el volumen de la sustancia requerida.

La naturaleza y la materia

La naturaleza y la materia


La materia tiene como propiedades generales la masa y el volumen, todos los cuerpos independientemente del estado de agregación tienen una masa y ocupan un volumen.
                                        ACTIVIDAD I: Relación entre la masa y el volumen

Los principales estados de agregación de la materia son tres; sólido líquido y gaseoso.
Los sólidos tienen forma y volumen constantes, los líquidos se caracterizan por tener volumen constante y forma variable y los gases tienen forma y volumen variable.


El modelo cinético-molecular de la materia se basa en que la materia es discontinua, sus partículas están en movimiento debido a dos clases de fuerzas: de cohesión y de repulsión.
El modelo cinético-molecular permite describir los tres estados de la materia. 

Mediante este modelo se puede justificar las leyes sobre los gases de Boyle-Mariotte y de Gay-Lussac.

Los cambios de estado se denominan: fusión (paso de sólido a líquido), solidificación (de líquido a sólido), vaporización (de líquido a gas), condensación (de gas a líquido), sublimación (de sólido a gas) y sublimación inversa (de gas a sólido).

Todas las sustancias puras tienen una gráfica de calentamiento o de enfriamiento características.
La temperatura o punto de fusión de una sustancia es la temperatura a la que se produce el cambio de estado de sólido a líquido en toda la masa del sólido.
La temperatura o punto de ebullición de una sutancia es la temperatura a la que se produce el cambio de estado de líquido a gas en toda la masa del líquido.
El calor latente es la energía requerida por una cantidad de sustancia para cambiar del estado sólido al líquido (calor latente de fusión) o de líquido a gaseoso (calor latente de vaporización).

Torneo de tenis de mesa

Torneo de tenis de mesa

CADA SEMANA SE CELEBRARÁ UNA JORNADA, HAY 22 JORNADAS (2 Rondas) 

De la jornada 1 a 11 el primer jugador elegirá campo 

De la jornada 12 a la 22 el segundo jugador elegirá 

A lo largo de las 22 jornadas los ocho jugadores deberán jugar dos partidas con los otros compañeros. Cada partida será a 12  tantos. 

Los resultados de cada partida serán victoria (1) o derrota (0) 



Torneo de ajedrez

Torneo de ajedrez

CADA SEMANA SE CELEBRARÁ UNA JORNADA, HAY 18 JORNADAS (2 Rondas)

De la jornada 1 a 9 el primer jugador jugará con blancas

De la jornada 10 a la 18 el segundo jugador jugará con blancas



A lo largo de las 18 jornadas los diez jugadores deberán jugar dos partidas una con blancas y otra con negras con los otros compañeros.

Los resultados de cada partida serán victoria (1), derrota (0) o tablas (0,5)

Se puede acordar las partidas online







Números racionales y decimales

 Números racionales y decimales


Contenidos:
  1. Fracciones   (Vídeo 1Vídeo 2Vídeo 3)
  2. Operaciones con fracciones  (Vídeo 4Vídeo 5)
  3. Problemas con fracciones  (Vídeo 6)
Hojas de trabajo:
Presentación:

Junior Esports


JUNIOR Esports es la primera y única competición oficial de videojuegos entre Centros Educativos. Nuestro compromiso con la educación nos lleva a ser un generador de iniciativas donde trabajamos directamente con docentes y estudiantes en diferentes ámbitos. Dirigida a l@s alumn@s de entre 14 y 18 años, de manera completamente gratuita, desarrollamos los valores de convivencia que se adquieren a través de los videojuegos de manera online, pero también de forma presencial, donde los mejores equipos tendrán la oportunidad de asistir con todos los gastos cubiertos.


Actualmente en el IES Palomeras-Vallecas existen los siguientes equipos en las distintas competiciones de  Brawl Stars y Rocket League:

Junior Esports


Palomeras-Vallecas BS 2.2  (Nacho, Azarel y Jorge)
Palomeras-Vallecas BS 3.2 (David, Hugo, Christian y Pablo)
Palomeras-Vallecas BS 3.4 (Izán, Miguel e Iker Jordan)
Palomeras-Vallecas BS 4.2 (Luis, Asier e Izán)

Junior Esports



Palomeras-Vallecas RL 3.2.1 (Alberto, Pablo, Alejandro y Kevin)
Palomeras-Vallecas RL 3.2 (Alex, Nuk, Teo y Alex)

Si quieres participar en Junior ESPORTS tendrás una gran experiencia...

% en masa y % en volumen




Un porcentaje es una forma de expresar una cantidad como una fracción de 100 (por ciento, que significa "de cada 100"). El porcentaje es un tanto por ciento, es decir, es una cantidad que corresponde proporcionalmente a una parte de cien.

Esta es una forma muy utilizada en nuestra vida cotidiana, en química se utiliza con mucha frecuencia para indicar la composición de una disolución

El porcentaje en masa de una disolución es el número de gramos de soluto que hay por cada 100 gramos de disolución y el porcentaje en volumen de una disolución es número de litros de soluto que hay por cada 100 litros de disolución.



Elementos, compuestos y mezclas


Elementos, compuestos y mezclas

Materia es todo aquello que ocupa un lugar en el espacio y tiene masa. Un tipo concreto de materia es una sustancia.




Podemos clasificar la materia en:
  • Sustancia pura es aquella materia homogénea que tiene una composición química definida en toda su extensión y se puede identificar por una serie de propiedades características. Las sustancias puras se clasifican, a su vez, en elementos y compuestos:
    • Un elemento químico es una sustancia pura que no puede descomponerse en otras más simples.
    • Un compuesto químico es una sustancia pura que, mediante procesos químicos, puede descomponerse en otras más simples.
  • Una mezcla es un sustancia material de composición variable, formado por dos o más sustancias puras que pueden separarse utilizando procedimientos físicos. Las mezclas se clasifican en mezclas heterogéneas y mezclas homogéneas o disoluciones:
    • Una mezcla heterogénea es aquella en la que pueden distinguirse sus componentes a simple vista o con el microscopio óptico. Distinguimos las dispersiones coloidales y las suspensiones.
    • Una mezcla homogénea o disolución es aquella en la que no es posible distinguir sus componentes a simple vista o con el microscopio óptico.
      ACTIVIDAD III: Repasa las mezclas
Las técnicas de separación de mezclas más importantes son la filtración, la decantación, la extracción, la cristalización, la destilación y la cromatografía.

Los componentes de una disolución reciben el nombre de:
  • Soluto. Es la sustancia que se disuelve y es el componente que se encuentra en menor proporción.
  • Disolvente. Es la sustancia que disuelve al soluto y es el componente que se encuentra en mayor proporción.

Una disolución saturada es aquella que, a una temperatura determinada, ya no admite más soluto. Observa este vídeo sobre los tipos de disoluciones.


La concentración de una disolución expresa, de forma numérica, la cantidad de soluto que hay en una determinada cantidad de disolución. 
Se puede dar la concentración en masa% en masa y % en volumen.
 ACTIVIDAD VI: Repasa las disoluciones

La solubilidad de una sustancia en un disolvente es la máxima cantidad de soluto que puede disolverse en una cierta cantidad de disolvente a una determinada temperatura.
ACTIVIDAD VII: ¿Qué es la solubilidad?
ACTIVIDAD VIII: Curvas de solubilidad

Las disoluciones


Las disoluciones


Los componentes de una disolución reciben el nombre de:
  • Soluto. Es la sustancia que se disuelve y es el componente que se encuentra en menor proporción.
  • Disolvente. Es la sustancia que disuelve al soluto y es el componente que se encuentra en mayor proporción.

Una disolución saturada es aquella que, a una temperatura determinada, ya no admite más soluto. Observa este vídeo sobre los tipos de disoluciones.


La concentración de una disolución expresa, de forma numérica, la cantidad de soluto que hay en una determinada cantidad de disolución. 
Se puede dar la concentración en masa% en masa y  % en volumen
ACTIVIDAD II: Conoce las disoluciones
 ACTIVIDAD III: Repasa las disoluciones

La solubilidad de una sustancia en un disolvente es la máxima cantidad de soluto que puede disolverse en una cierta cantidad de disolvente a una determinada temperatura.


Un cielo, dos países: El camino de los descubrimientos


Un cielo, dos países: El camino de los descubrimientos

El día 12 de septiembre de 2023 se fundó nuestro proyecto eTwinning:"Un ciel, deux pays : Le chemin des découvertes / Un cielo, dos países: El camino de los descubrimientos" un proyecto en el que hacemos un hermanamiento eTwinning con nuestr@s compañer@s de Ecole Victor Hugo de la ciudad de L'Aigle en Francia, concretamente la clase de la profesora Katerina Zinieri. En este proyecto eTwinning participarán alumn@s de 2ºESO, clase 2.2 ESO.
La Escuela Víctor Hugo es nuestra escuela hermana durante muchos años y siempre es agradable volver a colaborar juntos entrelazando lazos de amistad entre nuestros alumnos gracias al proyecto, "Un cielo, dos países..."
Los objetivos que nos hemos propuesto en este proyecto son:

  • Valorar la colaboración entre los alumnos de ambas escuelas hermanas a través de actividades culturales y científicas.
  • Realizar actividades en el marco de los programas curriculares de las respectivas escuelas en Ciencia y en Física y Química.
  • Conseguir habilidades de comunicación en francés y en castellano usando las tecnologías de la información y de la comunicación, así como fomentar y valorar la utilización del castellano y el francés como lenguas de comunicación en Europa.
  • Conseguir un entorno virtual de aprendizaje colaborativo entre ambas escuelas. Como son alumnos de primaria en Francia y secundaria en España de edades diferentes los alumnos trabajarán en grupos ayudándose mutuamente y trabajando según sus capacidades.
  • Conocer aspectos científicos relacionados con de Física y Química y Ciencias de la Naturaleza y conocer una otra cultura.
  • Crear una conciencia de pertenencia a un grupo y establecer lazos de amistad y trabajo en equipo.


El proyecto se está desarrollando durante el curso 2023/2024 y deseamos que esta aventura eTwinning sea muy enriquecedora para tod@s l@s participantes en el mismo



En este viaje usando las Tecnologías de la Información y Comunicación lo podemos seguir el mismo por medio de los siguientes hashtags en Twitter a lo largo de todos los años que hemos trabajado juntos:
Todas las actividades que vamos desarrollando desde septiembre hasta finalizar el curso las podemos ver visitando nuestro Twinspace, que es un espacio de verdadera colaboración entre las escuelas hermanas como somos Ecole Victor Hugo e IES Palomeras-Vallecas.


Un cielo, dos países: El camino de los descubrimientos
 
¡Siempre es maravilloso colaborar con vosotros, Ecole Victor Hugo!
El camino de este proyecto sé que será precioso

Fuerzas intermoleculares



Las fuerzas que tienden a unir las moléculas de compuestos covalentes se denominan fuerzas intermoleculares


Como las moléculas covalentes pueden ser polares y apolares a estas fuerzas se las clasifica de la siguiente manera:
  • Fuerzas dipolo-dipolo (moléculas polares)
  • Fuerzas de London (moléculas apolares o dipolos instantáneos)
  • Enlace de hidrógeno (moléculas con atómos de hidrógeno unidos a átomos de flúor, oxígeno o nitrógeno)
ACTIVIDAD II: Vídeo de fuerzas de Van der Waals
ACTIVIDAD III: Vídeo de enlace de hidrógeno
ACTIVIDAD IV: Resumen de las fuerzas intermoleculares I
ACTIVIDAD V: Resumen de las fuerzas intermoleculares II

Enlace metálico

Enlace metálico

Un enlace metálico es un enlace químico que mantiene unidos los átomos de los metales entre sí.  Existe la unión entre núcleos atómicos y los electrones de valencia, que se juntan alrededor de éstos núcleo atómicos y forman la nube electrónica En el enlace metálico todos los átomos comparten los electrones del nivel más externo, dando lagar a redes cristalinas metálicas. 

Los compuestos metálicos se ordenan redes tridimensionales, ocupando posiciones de equilibrio en los vértices de determinadas formas geométricas. Los metales de uso industrial más frecuente cristalizan en tres redes que son:
  • Red cúbica centrada en el cuerpo, con una coordinación de 8 como el litio o sodio.
  • Red cúbica de caras centradas, con una coordinación de 12 como el oro, aluminio o plomo.
  • Red hexagonal compacta, con una coordinación de 12 como magnesio, cinc o cadmio.
ACTIVIDAD IV: Redes metálicas
ACTIVIDAD V: Construye redes metálicas

Para explicar el enlace metálico se utilizan dos modelos:
  • Modelo del mar de electrones, en el que se afirma que los electrones de valencia no pertenecen a los átomos del metal, sino que todos ellos forman lo que se conoce como "mar de electrones", estando deslocalizados por toda la red y siendo comunes al conjunto de átomos que la forman.
  • Modelo de bandas, según el cual se describe la estructura electrónica del metal como una estructura de bandas electrónicas, o simplemente estructura de bandas de energía, debidas al solapamiento de los orbitales atómicos. Existiendo dos bandas una de valencia ocupada por los electrones de valencia de los átomos, es decir, aquellos electrones que se encuentran en la última capa o nivel energético de los átomos y otra banda de conducción que está ocupada por los electrones libres, es decir, aquellos que se han desligado de sus átomos y pueden moverse fácilmente. Estos electrones son los responsables de conducir la corriente eléctrica y en función de la distancia entre las capas de valencia y conducción se pueden clasificar los materiales como conductores, semiconductores o aislantes.

ACTIVIDAD VI: Vídeo del modelo de mar de electrones
ACTIVIDAD VII: Modelo de la teoría de bandas

Los metales son todos, salvo el mercurio, sólidos a temperatura ambiente, tienen alta conductividad térmica y eléctrica, poseen brillo metálico, son dúctiles y maleables y emiten electrones por efecto del calor y la luz.

ACTIVIDAD VIII: Resumen de las propiedades del enlace metálico

Este vídeo y las actividades siguientes te pueden servir para repasar el enlace metálico:


ACTIVIDAD IX: Repasa el enlace metálico
ACTIVIDAD X: Preguntas sobre enlace metálico