Proyecto eTwinning: "Mathematical Journey 2.0"


Proyecto eTwinning:  "Mathematical Journey 2.0"


El grupo FPBI2A desde el curso pasado está desarrollando el proyecto eTwinning "Mathematical Journey 2.0", en el que en lengua inglesa van a utilizar las matemáticas para todo lo que necesitan conocer en un viaje, presupuestos, distancias, costes, movimientos y emergencias 

En este proyecto nuestros estudiantes colaboran con estudiantes de centros educativos de Turquía, Rumanía y Grecia y está previsto que los estudiantes conozcan diferentes culturas y realicen un viaje hacia esas culturas que ahora mismo conocen. Usando las tecnologías de la información y comunicación, las escuelas asociadas al proyecto podrán realizar un viaje virtual a uno o varios países que hayan seleccionado y esperamos que creen un presupuesto para este viaje virtual. 

En este proyecto además se realizará un estudio sobre el uso de las matemáticas en la vida diaria, además de lograr que los estudiantes conozcan diferentes culturas de sus compañeros de proyecto.

Si quieres conocer más sobre este proyecto eTwinning "Mathematical Journey 2.0" visita nuestro Twinspace:


TWINSPACE "Mathematical Journey"

Proyecto eTwinning: "El arte de la Ciencia 4.0

Proyecto eTwinning: "El arte de la Ciencia 4.0


Los alumnos del 3.4 ESO del IES Palomeras-Vallecas, colaboran en el proyecto eTwinning "El arte de la Ciencia 4.0" en el que colaboran junto con otros dos centros educativos que son Agrupamento de Escolas do Fundão (Portugal) y el IES Cervantes (España). Este proyecto se desarrolla en el curso 2024/2025 y tiene por objetivos:
  • Promover entre nuestros alumnos la importancia de diferentes disciplinas de Ciencias y su relación con otras disciplinas Artísticas y Humanísticas.
  • Fomentar el uso del castellano como lengua de comunicación en Europa.
  • Valorar la colaboración entre los estudiantes de diferentes centros y países que forman el proyecto.
  • Establecer redes de hermanamiento entre las diferentes escuelas españolas y portuguesa que forman el proyecto.
  • Conseguir un entorno virtual de aprendizaje colaborativo entre alumnos, en el que exista conciencia de pertenencia a un grupo y se estableciendo lazos de solidaridad, empatía y trabajo en equipo.
  • Mejorar las competencias clave de los alumnos utilizándolas TIC, respetando los derechos de autor y la propiedad intelectual.
Si quieres conocer nuestro proyecto visita nuestro Twinpace:

Proyecto eTwinning: "De Rita a Margarita..."

Proyecto eTwinning: "De Rita a Margarita..."

En el proyecto eTwinning "De Rita a Margarita..."  l@s alumn@s de 4º de ESO (Grupos 4.1 y 4.2) del IES Palomeras-Vallecas junto con otros dos Institutos de Madrid como son el IES Cervantes e IES Santa Teresa de Jesús conocen y ponen en valor a lo largo del curso académico 2023/2024 la labor y la importancia de las Mujeres en el mundo científico y su evolución en el tiempo, dicha importancia también se extenderá a la visión particular de l@s compañer@s IISS Leonardo da Vinci de Arzignano (Italia).

En este proyecto eTwinning, tenemos los siguientes objetivos:

  • Promover entre nuestros alumnos la inclusión de la perspectiva de género como categoría transversal en la ciencia, la tecnología y la innovación, así como una presencia equilibrada de mujeres y hombres en todos los ámbitos del Sistema Español de Ciencia, Tecnología e Innovación.
  • Fomentar las vocaciones científica entre nuestros alumnos.
  • Valorar la colaboración entre los estudiantes de diferentes centros que forman el proyecto.
  • Conseguir un entorno virtual de aprendizaje colaborativo entre alumnos, en el que se exista conciencia de pertenencia a un grupo y se establezcan lazos de solidaridad y trabajo en equipo.
  • Mejorar las competencias clave utilizando las TIC, respetando los derechos de autor y la propiedad intelectual.
  • Fomentar el uso del castellano como lengua de comunicación en Europa.
Este proyecto "De Rita a Margarita..." tiene unos antecedentes prometedores en nuestro IES Palomeras-Vallecas ya que recuerda la experiencia vivida en otros proyectos eTwinning hermanos como fueron "Brillando en la oscuridad" e "Iluminando ConCiencias" ,  "Genias de luz" y "100tifícate"

Si quieres conocer nuestro proyecto y en todo lo que colaboramos, visita su Twinspace...





Proporcionalidad directa e inversa

 

Proporcionalidad directa e inversa


Contenidos:
  1. Razón y Proporción (Vídeo 1)
  2. Proporcionalidad directa, inversa y compuesta   (Vídeo 2Vídeo 3Vídeo  4)
  3. Repartos proporcionales (Vídeo 5)
  4. Porcentajes (Vídeo 6)
  5. Aumento y disminución porcentual  (Vídeo 7Vídeo 8Vídeo 9)
Hojas de trabajo:
  • Proporcionalidad (Hoja 0S)
  • Razón y Proporción    (Hoja 1,  S)
  • Proporcionalidad directa, inversa y compuesta    (Hoja 2,  S)
  • Repartos proporcionales  (Hoja 3,  S)
  • Porcentajes  (Hoja 4,  S)
  • Aumento y disminución porcentual  (Hoja 5,  S)

Fuerzas intermoleculares



Las fuerzas que tienden a unir las moléculas de compuestos covalentes se denominan fuerzas intermoleculares


Como las moléculas covalentes pueden ser polares y apolares a estas fuerzas se las clasifica de la siguiente manera:
  • Fuerzas dipolo-dipolo (moléculas polares)
  • Fuerzas de London (moléculas apolares o dipolos instantáneos)
  • Enlace de hidrógeno (moléculas con atómos de hidrógeno unidos a átomos de flúor, oxígeno o nitrógeno)
ACTIVIDAD II: Vídeo de fuerzas de Van der Waals
ACTIVIDAD III: Vídeo de enlace de hidrógeno
ACTIVIDAD IV: Resumen de las fuerzas intermoleculares I
ACTIVIDAD V: Resumen de las fuerzas intermoleculares II

Enlace metálico

Enlace metálico

Un enlace metálico es un enlace químico que mantiene unidos los átomos de los metales entre sí.  Existe la unión entre núcleos atómicos y los electrones de valencia, que se juntan alrededor de éstos núcleo atómicos y forman la nube electrónica En el enlace metálico todos los átomos comparten los electrones del nivel más externo, dando lagar a redes cristalinas metálicas. 

Los compuestos metálicos se ordenan redes tridimensionales, ocupando posiciones de equilibrio en los vértices de determinadas formas geométricas. Los metales de uso industrial más frecuente cristalizan en tres redes que son:
  • Red cúbica centrada en el cuerpo, con una coordinación de 8 como el litio o sodio.
  • Red cúbica de caras centradas, con una coordinación de 12 como el oro, aluminio o plomo.
  • Red hexagonal compacta, con una coordinación de 12 como magnesio, cinc o cadmio.
ACTIVIDAD IV: Redes metálicas
ACTIVIDAD V: Construye redes metálicas

Para explicar el enlace metálico se utilizan dos modelos:
  • Modelo del mar de electrones, en el que se afirma que los electrones de valencia no pertenecen a los átomos del metal, sino que todos ellos forman lo que se conoce como "mar de electrones", estando deslocalizados por toda la red y siendo comunes al conjunto de átomos que la forman.
  • Modelo de bandas, según el cual se describe la estructura electrónica del metal como una estructura de bandas electrónicas, o simplemente estructura de bandas de energía, debidas al solapamiento de los orbitales atómicos. Existiendo dos bandas una de valencia ocupada por los electrones de valencia de los átomos, es decir, aquellos electrones que se encuentran en la última capa o nivel energético de los átomos y otra banda de conducción que está ocupada por los electrones libres, es decir, aquellos que se han desligado de sus átomos y pueden moverse fácilmente. Estos electrones son los responsables de conducir la corriente eléctrica y en función de la distancia entre las capas de valencia y conducción se pueden clasificar los materiales como conductores, semiconductores o aislantes.

ACTIVIDAD VI: Vídeo del modelo de mar de electrones
ACTIVIDAD VII: Modelo de la teoría de bandas

Los metales son todos, salvo el mercurio, sólidos a temperatura ambiente, tienen alta conductividad térmica y eléctrica, poseen brillo metálico, son dúctiles y maleables y emiten electrones por efecto del calor y la luz.

ACTIVIDAD VIII: Resumen de las propiedades del enlace metálico

Este vídeo y las actividades siguientes te pueden servir para repasar el enlace metálico:


ACTIVIDAD IX: Repasa el enlace metálico
ACTIVIDAD X: Preguntas sobre enlace metálico

Enlace covalente

Enlace covalente



El enlace covalente se produce entre dos átomos cuando estos átomos se unen, para alcanzar el octeto estable, compartiendo electrones del último nivel (excepto el hidrógeno que alcanza la estabilidad cuando tiene 2 electrones). Para generar un enlace covalente es preciso que la diferencia de electronegatividad entre los átomos sea menor a 1,7.

ACTIVIDAD II:  Simulador de moléculas polares y apolares
ACTIVIDAD III: Juega con los enlaces

Denominamos estructura de Lewis al esquema en el que aparecen todos los átomos de la molécula con sus electrones de la última capa y en la que vemos tanto los pares compartidos o enlaces covalentes, como los no compartidos o pares no enlazantes.
Los pasos a seguir son:
  • Realizar la configuración electrónica de los átomos para conocer cuántos electrones de valencia tienen.
  • Saber los enlaces que quiere formar cada uno de los átomos, serán los mismos que electrones le falten para completar el octeto.
  • Dibujar esos pares enlazantes y añadir los pares no enlazantes a cada átomo para que aparezcan todos sus electrones de la última capa.

Las estructuras resonantes son útiles porque permiten representar moléculas, iones y radicales para los cuales resulta inadecuada una sola estructura de Lewis. Se escriben entonces dos o más de dichas estructuras y se les llama estructuras en resonancia o contribuyentes de resonancia.

ACTIVIDAD VI:  La resonancia en química
ACTIVIDAD VII: Resonancia del benceno
ACTIVIDAD VIII: Estructuras resonantes

La teoría de repulsión de pares de electrones de valencia​​, es un modelo usado en química para predecir la forma de las moléculas o iones poliatómicos. Está basado en el grado de repulsión electrostática de los pares de electrones de valencia alrededor del átomo central.

ACTIVIDAD IX: Comparación de las geometrías de varias moléculas
ACTIVIDAD X: Teoría de repulsiones de la capa de valencia
ACTIVIDAD XI: Vídeo sobre teoría de repulsiones de la capa de valencia
ACTIVIDAD XII: Teoría de repulsiones de la capa de valencia


Para que una molécula sea polar, debe tener átomos con diferente electronegatividad y separación de cargas en la moléculas, con estas dos premisas en la molécula habrá un momento dipolar en la molécula.

ACTIVIDAD XIII: Polaridad de moléculas
ACTIVIDAD XIV: Naturaleza del enlace

La teoría de hibridación de orbitales complementa la teoría de enlace de valencia a la hora de explicar la formación de enlaces covalentes. En concreto, la hibridación es el mecanismo que justifica la distribución espacial de los pares de electrones de valencia. Los tipos de hibridación de orbitales que necesitamos aplicar para justificar la geometría de las moléculas más simples son: sp, sp2 y sp3.
Las ideas básicas del modelo de hibridación son:

  • Un orbital híbrido es una combinación de orbitales atómicos
  • El número de orbitales híbridos que se forman es igual al número de orbitales atómicos que se combinan.
  • Los orbitales híbridos formados tienen la misma forma y una determinada orientación espacial: sp lineal; sp2 triangular plana y sp3 tetraédrica.
  • Los orbitales híbridos disponen de una zona o lóbulo enlazante y otra zona o lóbulo antienlazante; el enlace se produce por el solapamiento del lóbulo enlazante con el otro orbital del átomo a enlazar.
ACTIVIDAD XV: Orbitales híbridos
ACTIVIDAD XVI: Vídeo sobre hibridación de orbitales  atómicos 
ACTIVIDAD XVII: Teoría de hibridación: Formación de enlaces


Los compuestos covalentes  diferenciaremos entre las propiedades de las moléculas y los cristales.
Los compuestos covalentes moleculares:

  • Tienen puntos de fusión y ebullición bajos debido a que las fuerzas entre las moléculas son débiles, siendo mayores cuando aumenta la polaridad.
  •  No conducen la electricidad ya que no hay cargas ni electrones libres.
  • Se disuelven en sustancias con su misma polaridad, es decir, si es apolar en disolventes apolares y en polares cuando sea polar.

Los cristales covalentes :

  • Tienen altos puntos de fusión y ebullición por estar los átomos unidos por enlaces covalentes bastante fuertes.
  • Son insolubles en casi todos los disolventes.
  • No conducen el calor ni la electricidad, a excepción del grafito que dispone de electrones que pueden moverse entre las capas planas. 
ACTIVIDAD XIX: Propiedades de los sólidos covalentes

Este vídeo y las actividades siguientes te pueden servir para repasar la formación y las propiedades del enlace covalente:

ACTIVIDAD XX: Repasa el enlace covalente I
ACTIVIDAD XXI: Repasa el enlace covalente II


Enlace iónico

Enlace iónico

El enlace iónico es el resultado de la fuerzas de atracción electrostática entre iones de distinto signo. 
Un enlace se considera iónico cuando la electronegatividad de los elementos que forman el enlace es superior a 1,8.

ACTIVIDAD I: Simulador  de Enlaces
ACTIVIDAD II: Juego del enlace iónico

Los compuestos iónicos forman redes cristalinas constituidas por un número enorme de iones de carga opuesta, unidos por fuerzas electrostáticas. Este tipo de atracción determina las propiedades observadas. Si la atracción electrostática es fuerte, se forman sólidos cristalinos de elevado punto de fusión e insolubles en agua; si la atracción es menor, como en el caso del NaCl, el punto de fusión también es menor y, en general, son solubles en agua e insolubles en líquidos apolares, como el benceno.

ACTIVIDAD III: Redes iónicas cristalinas
ACTIVIDAD IV: Redes iónicas
ACTIVIDAD V: Resumen de las propiedades del enlace iónico

La energía de red o energía reticular es la energía que se desprende al fomarse un mol de cristal iónico a partir de los iones que lo componen en estado gaseoso. Para calcular la energía reticular se puede usar la ecuación de Born-Landé

ACTIVIDAD VI: Parámetros de los que depende la energía de red

Mediante el ciclo de Born-Haber es posible calcular el valor de la energía reticular utilizando un camino indirecto basado en la ley de Hess, sin más que sumar los cambios de energía que tienen lugar en el proceso de formación del compuesto iónico.

ACTIVIDAD VII: Vídeo del ciclo de Born-Haber
ACTIVIDAD VIII: Ciclo de Born-Haber
ACTIVIDAD IX: Ejemplos del Ciclo de Born-Haber

Este vídeo y las actividades siguientes te pueden servir para repasar la formación y las propiedades del enlace iónico:

ACTIVIDAD X: Repasa el enlace iónico

Enlace Químico: Diagramas de Morse


Las fuerzas que mantienen unidos los átomos se denominan enlaces. Un enlace químico se produce cuando los átomos unidos adquieren un estado de menor energía y por tanto de mayor estabilidad, que cuando los átomos estaban por separado.
Cuando dos átomos están lo suficientemente separados, se puede suponer que no existe influencia mutua entre ellos y que la energía del sistema formado es nula. A medida que se van acercando, se ponen de manifiesto una serie de fuerzas de atracción de sus núcleos sobre las nubes electrónicas de los otros átomos (fuerzas de largo alcance), lo que produce una disminución de la energía del sistema. 
Cuando los átomos se encuentran uno cerca del otro, empiezan a actuar las fuerzas de repulsión entre las nubes electrónicas, estas fuerzas tienen un efecto mayor a corta distancia, entonces el sistema se desestabiliza. 
Ambas situaciones se pueden representar gráficamente mediante curvas de estabilidad, curvas de Morse. Se observa que existe una distancia internuclear en la que el sistema es más estable, siendo máximas las fuerzas de atracción y mínimas las de repulsión, esta distancia se denomina distancia de enlace y corresponde al mínimo de la curva. La energía correspondiente a esta distancia es la que se desprende en la formación del enlace químico.


Los diferentes tipos de enlaces químicos los puedes repasar en el siguiente vídeo y con las siguientes actividades:



ACTIVIDAD II: Tipos de enlaces

Un sistema para el Siglo XXI

Un sistema para el Siglo XXI


El actual Sistema Internacional (SI) es el sistema adoptado internacionalmente, utilizado en la práctica científica y el único legal en España, en la Unión Europea y en numerosos otros países. El SI parte de un pequeño número de magnitudes/unidades denominadas básicas definiendo, a partir de ellas, las denominadas derivadas, como producto de potencias de las básicas. Cuando este producto de potencias no incluye ningún factor numérico distinto de la unidad, estas unidades derivadas se denominan coherentes. Así pues, el SI es un sistema coherente de unidades, que permite cuantificar cualquier magnitud medible de interés en la investigación, la industria, el comercio o la sociedad, en campos tan variados como la salud, la seguridad, la protección del medio ambiente, la adquisición de bienes o la facturación de consumos, por ejemplo. 

El SI actual consta de siete unidades básicas, más un amplio grupo de unidades derivadas, junto a un conjunto de prefijos adoptados para denominar los valores de aquellas magnitudes que son mucho más grandes o mucho más pequeñas que la unidad básica, y que van desde el prefijo yocto hasta el prefijo yotta.

Desde Recursos Palomeras-Vallecas nos hacemos eco de la información del Centro Español de Metrología, que nos recuerda que en noviembre de 2018 se revisó las definiciones del  kilogramo, amperio, kelvin y mol  y es probable que esta revisión sea aprobada por la Conferencia General de Pesas y Medidas (CGPM), el organismo internacional responsable de la comparabilidad global de las mediciones. Se espera que las definiciones revisadas entren en vigor el 20 de mayo de 2019

En el SI revisado, el kilogramo, el amperio, el kelvin y el mol se redefinirán en términos de valores numéricos fijos de las siguientes constantes de la naturaleza:
La constante de Planck (h),
La carga elemental (e),
La constante de Boltzmann (k),
La constante de Avogadro (NA), respectivamente.
y heredarán las incertidumbres asociadas a la determinación de dichas constantes.

Todas las definiciones de las unidades, se redactarán de forma distinta a la actual, de manera que las constantes aparezcan en ellas de manera explícita.

El resultado será una definición más coherente y fundamental de todo el SI, prescindiendo de realizaciones prácticas basadas en artefactos materiales, como era el caso hasta ahora del prototipo internacional del kilogramo, con posibilidad de pérdida y fuertes limitaciones de estabilidad a largo plazo, pasando a realizaciones prácticas más exactas, además de reproducibles en cualquier tiempo y lugar.



Fracciones

 

Fracciones


Contenidos:
  1. Fracciones   (Vídeo 1Vídeo 2Vídeo 3)
  2. Operaciones con fracciones  (Vídeo 4Vídeo 5)
  3. Problemas con fracciones  (Vídeo 6)
Hojas de trabajo:

Efecto fotoeléctrico

Efecto fotoeléctrico

El efecto fotoeléctrico es el fenómeno que consiste en la emisión de electrones por un material metálico al incidir sobre él una radiación electromagnética.

El efecto fotoeléctrico fue descubierto y descrito por Hertz, en 1887, al observar que el arco que salta entre dos electrodos conectados a alta tensión alcanza distancias mayores cuando se ilumina con luz ultravioleta que cuando se deja en la oscuridad. Einstein dió la explicación teórica del efecto fotoeléctrico, basando esta explicación en una extensión del trabajo sobre los cuantos de Planck. En 1921 Einstein fue galardonado con el Premio Nobel.

Este vídeo y las simulaciones siguientes sirven para asimilar el efecto fotoeléctrico: