Mostrando entradas con la etiqueta 1º Bachillerato. Mostrar todas las entradas
Mostrando entradas con la etiqueta 1º Bachillerato. Mostrar todas las entradas

Cinemática


Las magnitudes fundamentales para estudiar el movimiento de un cuerpo son el tiempo, la posición, la velocidad y la aceleración.

ACTIVIDAD II: Cinemática

Cuando un objeto se mueve en línea recta decimos que su movimiento es rectilíneo. Si este movimiento es siempre a la misma velocidad, se llama movimiento rectilíneo uniforme (MRU).
Si, por el contrario, el movimiento está acelerado y está aceleración es siempre la misma, se denomina movimiento rectilíneo uniformemente acelerado (MRUA).

ACTIVIDAD III: Ejemplos de MRU y MRUA
ACTIVIDAD VI: Gráficas de MRU y MRUA


Repasa las siguientes actividades y simulaciones, relacionadas con los movimientos rectilíneo uniforme y movimiento rectilíneo uniformemente acelerado

ACTIVIDAD VII: Recuerda el MRU
ACTIVIDAD VIII: Cálculo de velocidad
ACTIVIDAD XI: Gráfica del MRUA

Decimos que un cuerpo realiza un movimiento circular uniforme (MCU) cuando su trayectoria es una circunferencia y su velocidad angular es constante, parámetros característicos de este movimiento es el período y la frecuencia.


La composición de movimientos se basan en dos principios:
  • Principio de Independencia: Cuando un móvil está sometido por causas diferentes a dos movimientos simultáneamente, su cambio de posición es independiente de considerarlos simultáneos o sucesivos
  • Principio de superposición: La posición, velocidad y aceleración vienen dados por la suma vectorial de los movimientos parciales.
ACTIVIDAD XIX: Ejemplos de composición de movimientos 
ACTIVIDAD XX: Actividades interactivas de composición de movimientos

Transformaciones energéticas y espontaneidad de las reacciones


La termoquímica es  el estudio de las transformaciones que sufre la energía calorífica en las reacciones químicas, surgiendo como una aplicación de la termodinámica a la química.
Un sistema termodinámico es la parte del universo que se está observando y el entorno es lo que le rodea. Distinguimos tres tipos de sistemas:
  • Abierto: Intercambia materia y energía con el entorno.
  • Cerrado: Intercambia energía, pero no materia con el entorno
  • Aislado: No intercambia materia, ni energía con el entorno.
Las variables de estado son cada una de las propiedades de un sistema que varían mientras el sistema evoluciona, existen dos tipos de variables de estado:
  • Extensivas: Dependen de la cantidad de materia del sistema.
  • Intensivas: No dependen de la cantidad de materia del sistema.
Las funciones de estado son variables que solamente dependen del estado del sistema y por este motivo, su variación solo depende de la situación inicial y final del sistema y no del camino llevado en la transformación.

ACTIVIDAD I: Vídeo de variables y funciones de estado

El equilibrio es el estado de un sistema que es estable frente a una transformación infinitesimal. Existen diferentes tipos de trasformaciones:
  • Reversibles: Se realiza a través de una serie continua de estados de equilibrio.
  • Irreversible: Se realiza de forma no reversible.
  • Isotérmica: Se realiza a temperatura constante.
  • Isobárica: Se produce a presión constante.
  • Isocórica: Se produce a volumen constante.
  • Adiabática: No existe intercambio de calor con el entorno.
ACTIVIDAD II: Vídeo de transformaciones termodinámicas
El primer principio de la termodinámica indica que la formas de cambiar la energía interna de un sistema es mediante variaciones de calor o de trabajo. “En un sistema cerrado, la energía intercambiada en forma de calor y trabajo entre el sistema y los alrededores es igual a la variación de la energía interna del sistema”.

ACTIVIDAD III: Vídeo del primer principio de la termodinámica
Entalpía de reacción: Es el cambio de entalpía que se produce cuando se forma 1 mol de un compuesto a partir de sus elementos constituyentes en su forma elemental

Estándar de formación: Es el cambio de entalpía que se produce cuando se forma 1 mol de un compuesto a partir de sus elementos constituyentes en su forma elemental, en condiciones estándar(25ºC, 1 atm)
  • ∆H < 0 EXOTÉRMICA
  • ∆H  > 0 ENDOTÉRMICA
ACTIVIDAD IV: Variación de entalpia
Ley de Hess: cuando una reacción química puede expresarse como suma algebraica de otras, su calor de reacción es igual a la misma suma algebraica de los calores de las reacciones parcial.
ACTIVIDAD V:  Ley de Hess

Energía de Enlace: La energía de enlace es la cantidad de energía necesaria para romper un mol de enlaces covalentes de una especie gaseosa. La energía de enlace promedio es el valor medio de las energías de disociación de enlace de varias especies distintas que tienen un determinado enlace. Las entalpías de enlace son positivas, la ruptura de un enlace es un proceso endotérmico.

Entropía: Es una medida del grado de desorden de un sistema. En una reacción espontánea, el desorden total del sistema y de su entorno siempre aumenta y es lo que se conoce como segundo principio de la termodinámica.

ACTIVIDAD VI: Concepto de entropia
ACTIVIDAD VII: Segundo principio de la termodinámica
Energía Libre: es una magnitud termodinámica extensiva (depende de la cantidad de sistema) que se emplea para saber si una reacción será espontánea o no:
∆𝐺=∆𝐻–𝑇·∆𝑆
  • ∆G < 0 Reacción ESPONTÁNEA 
  • ∆G = 0 Sistema en EQUILIBRIO 
  • ∆G > 0 Reacción NO ESPONTÁNEA 
ACTIVIDAD VII:  Espontaneidad
ACTIVIDAD VIII:  Energía libre de Gibbs
Tercer Principio de la Termoquímica: "La entropía de un cristal perfecto a 0 K es nula”. La entropía de un elemento puro en su forma condensada estable (sólido o líquido) es cero cuando la temperatura tiende a cero y la presión es de 1 bar.

Brillando en la oscuridad

En este proyecto los alumnos de 1º de Bachillerato (Grupo 1.1) del  IES Palomeras-Vallecas junto con otros dos Institutos de Madrid como son el  IES Cervantes IES Santa Teresa de Jesús conocen y ponen en valor a lo largo del curso académico 2020/2021 la labor y la importancia de las Mujeres en el mundo científico y su evolución en el tiempo, dicha importancia también se extenderá a la visión particular de los compañeros del ISISS Giovanni Battista Novelli de Marcianise y IISS Leonardo da Vinci de Arzignano (Italia). En este proyecto eTwinning, tenemos los siguientes objetivos:

  • Promover entre nuestros alumnos la inclusión de la perspectiva de género como categoría transversal en la ciencia, la tecnología y la innovación, así como una presencia equilibrada de mujeres y hombres en todos los ámbitos del Sistema Español de Ciencia, Tecnología e Innovación.
  • Fomentar las vocaciones científicas entre nuestros alumnos, principalmente entre nuestras alumnas.
  • Valorar la colaboración entre los estudiantes con las materias de Ciencias que se imparten en sus Centros.
  • Conseguir un entorno virtual de aprendizaje colaborativo entre alumnos, en el que se exista conciencia de pertenencia a un grupo y se establezcan lazos de solidaridad y trabajo en equipo entre los IES Cervantes, IES Palomeras-Vallecas, ISISS Giovanni Battista Novelli, IISS Leonardo da Vinci e IES Santa Teresa de Jesús.
  • Fomentar el uso del castellano como lengua de comunicación en Europa.
  • Mejorar las competencias clave utilizando las TIC, respetando los derechos de autor y la protección de datos.
Si quieres conocer nuestro proyecto y  en todo lo que colaboramos, visita su Twinspace...

Las reacciones químicas



Una reacción química es un proceso mediante el cual una o varias sustancias iniciales, llamadas reactivos, se transforman en otras distintas a estas, denominadas productos.
ACTIVIDAD: Concepto de reacción química
ACTIVIDAD: Simulación síntesis del agua
ACTIVIDAD: Simulación de la Precipitación del Diyoduro de plomo
ACTIVIDAD: Simulador del reactivo limitante

Según la teoría de colisiones para que tenga lugar una reacción química es necesario:
  • Energía suficiente para que se rompan los enlaces entre átomos de reactivos. La energía mínima necesaria para que se produzca la reacción se denomina energía de activación.
  • Orientación adecuada para que, al romperse los enlaces, los átomos libres se puedan unir de la manera que requiere la formación de productos.

Una ecuación química es la representación escrita y abreviada de una reacción química. Ajustar una reacción química consiste en asignar a cada fórmula un coeficiente para que haya el mismo número de átomos de cada elemento en ambos miembros.
ACTIVIDAD: Ajuste de reacciones
ACTIVIDAD: Ajuste de reacciones II
ACTIVIDAD: Ajuste de reacciones III
ACTIVIDAD: Ajuste de reacciones IV

Según la ley de conservación de la masa en una reacción química, la suma de las masas de todas las sustancias que intervienen se mantiene constante. Es decir, la suma de las masas de los reactivos es igual a la suma de las masas de los productos.
ACTIVIDAD: Simulación Ley de Lavoisier
ACTIVIDAD: Calculadora de masas moleculares
Cuando trabajamos con gases según la hipótesis de Avogadro, volúmenes iguales de cualquier gas, medidos en las mismas condiciones de presión y temperatura, contienen el mismo número de moléculas.
ACTIVIDAD: Simulación Hipótesis de Avogadro

En el siguiente vídeo vemos diferentes tipos de reacciones químicas:


La velocidad de reacción es la rapidez con la que se combinan los reactivos o la rapidez con la que se forman los productos, la velocidad de reacción depende de diversos factores como son la temperatura, la concentración de los reactivos, el grado de división de los reactivos sólidos y la presencia de catalizadores.

ACTIVIDAD: Velocidad de reacción y factores de los que depende

En una reacción química, siempre tiene lugar un intercambio de energía entre las sustancias que intervienen y el medio en el que se encuentran. Según sea el sentido del intercambio de energía estas pueden ser:
  • Reacciones endotérmicas tienen lugar con absorción de energía en forma de calor.
  • Reacciones exotérmicas transcurren con desprendimiento de energía en forma de calor.

Si conocemos la masa y el volumen de algunos de los reactivos o productos de reacción, podremos calcular la masa y el volumen de las demás sustancias de la reacción. Para obtener esta información cuantitativa, efectuamos cálculos estequimétricos, que resolveremos aplicando factores de conversión.

ACTIVIDAD: Cálculos estequiométricos

Procedimiento para efectuar cálculos estequimétricos:
  1. Escribimos y ajustamos la ecuación química correspondiente.
  2. Convertimos a moles el dato de partida.
  3. Aplicamos la relación molar entre la sustancia conocida y la que queremos conocer, según los coeficientes de la ecuación química ajustada.
  4. Calculamos la masa o el volumen de la sustancia requerida.

Formulación y nomenclatura



Para representar una sustancia química utilizaremos la fórmula química que nos indicará los tipos de átomos que la forman así como el número o proporción de estos átomos en dicha sustancia. 
El objetivo de la formulación y nomenclatura química es que a partir del nombre de un compuesto sepamos cuál es su fórmula y a partir de una fórmula sepamos cuál es su nombre. Antiguamente esto no era tan fácil, pero gracias a las normas de la I.U.P.A.C. la formulación puede llegar a ser incluso entretenida. 

Cuando estudiamos las configuraciones electrónicas de los átomos vimos que los electrones de la capa de valencia tenían una importancia especial ya que eran los que participaban en la formación de los enlaces y en las reacciones químicas. También vimos que los gases nobles tenían gran estabilidad, y eso lo achacábamos a que tenían las capas electrónicas completas. Pues bien, tener las capas electrónicas completas será la situación a que tiendan la mayoría de los átomos a la hora de formar enlaces, o lo que es lo mismo a la hora de formar compuestos.


PRÁCTICA FORMULACIÓN

CASOS ESPECIALES DE OXOÁCIDOS

Vídeo explicativo de la formulación de oxoácidos:







En los siguientes enlace se puede practicar Nomenclatura y Formulación

Propiedades coligativas



Denominamos propiedades coligativas a las propiedades de las disoluciones y sus componentes que dependen únicamente del número de moléculas de soluto no volátil en relación al número de moléculas de disolvente y no de su naturaleza. Normalmente vienen expresadas como equivalente o concentración equivalente, es decir, de la cantidad de partículas totales del soluto, y no de su composición química. 

Son 4 las propiedades coligativas
  • Disminución de la presión de vapor.
  • Descenso del punto de congelación.
  • Aumento del punto de ebullición.
  • Presión osmótica

ACTIVIDAD I: Conoce las propiedades coligativas
ACTIVIDAD II: Expresiones de las propiedades coligativas 
ACTIVIDAD III: Vídeo de propiedades coligativas

Solubilidad


Solubilidad es una medida de la capacidad de disolverse de una determinada sustancia (soluto) en un determinado medio (disolvente). Implícitamente se corresponde con la máxima cantidad de soluto que se puede disolver en una cantidad determinada de disolvente, a determinadas condiciones de temperatura, e incluso presión.

Si en una disolución no se puede disolver más soluto decimos que la disolución está saturada. En algunas condiciones la solubilidad se puede sobrepasar de ese máximo y pasan a denominarse como soluciones sobresaturadas. Por el contrario si la disolución admite aún más soluto decimos que se encuentra insaturada.

No todas las sustancias se disuelven en un mismo solvente. Por ejemplo, en el agua, se disuelve el alcohol y la sal, en tanto que el aceite y la gasolina no se disuelven. En la solubilidad, el carácter polar o apolar de la sustancia influye mucho, ya que, debido a este carácter, la sustancia será más o menos soluble; por ejemplo, los compuestos con más de un grupo funcional presentan gran polaridad por lo que no son solubles en éter etílico.

Entonces para que un compuesto sea soluble en éter etílico ha de tener escasa polaridad; es decir, tal compuesto no ha de tener más de un grupo polar. Los compuestos con menor solubilidad son los que presentan menor reactividad, como son: las parafinas, compuestos aromáticos y los derivados halogenados.

El término solubilidad se utiliza tanto para designar al fenómeno cualitativo del proceso de disolución como para expresar cuantitativamente la concentración de las soluciones. La solubilidad de una sustancia depende de la naturaleza del disolvente y del soluto, así como de la temperatura y la presión del sistema, es decir, de la tendencia del sistema a alcanzar el valor máximo de entropía. Al proceso de interacción entre las moléculas del disolvente y las partículas del soluto para formar agregados se le llama solvatación y si el solvente es agua, hidratación.

Disoluciones. Forma de expresar la concentración




Los componentes de una disolución reciben el nombre de:
  • Soluto. Es la sustancia que se disuelve y es el componente que se encuentra en menor proporción.
  • Disolvente. Es la sustancia que disuelve al soluto y es el componente que se encuentra en mayor proporción.

Una disolución saturada es aquella que, a una temperatura determinada, ya no admite más soluto. Observa este vídeo sobre los tipos de disoluciones.


La concentración de una disolución expresa, de forma numérica, la cantidad de soluto que hay en una determinada cantidad de disolución. 
Se puede dar la concentración en masa% en masa% en volumen, molaridad y molalidad.
 ACTIVIDAD II: Repasa las disoluciones

La solubilidad de una sustancia en un disolvente es la máxima cantidad de soluto que puede disolverse en una cierta cantidad de disolvente a una determinada temperatura.
ACTIVIDAD III: ¿Qué es la solubilidad?



Leyes de los gases



Las leyes de los gases son las siguientes:
  • Ley de Boyle y Mariotte indica que: "El producto de la presión y el volumen de un gas siempre es constante para una temperatura constante"
  • Ley de Charles indica que: " El volumen que ocupa un gas es directamente proporcional a la temperatura absoluta a la que se encuentra, siempre que la presión sea constante".
  • Ley de Gay-Lussac indica que: "La presión que ejerce un gas es directamente a la temperatura absoluta a la que se encuentra, siempre que el volumen sea constante"
  • Ley de Avogadro afirma que: "Un mol de un gas ocupa siempre el mismo volumen que un mol de cualquier otro gas que se encuentre en las mismas condiciones de presión y temperatura". El volumen que ocupa un mol de cualquier gas, en condiciones normales, es de 22,4 L.
  • Ley de las presiones parciales o de Dalton indica que: "En un recipiente cerrado y a la temperatura constante, la presión total que ejerce una mezcla de gases equivale a la suma de las presiones parciales que ejercería cada gas de los que componen la mezcla si estuviera solo en el recipiente.
 Todas estas leyes las puedes repasar en el siguiente vídeo:


Con estas simulaciones te familiarizaras con las leyes de los gases:


Fórmulas empíricas y moleculares


La fórmula química es la representación de los elementos que forman un compuesto y la proporción en que se encuentran, o del número de átomos que forman una molécula. También puede darnos información adicional como la manera en que se unen dichos átomos mediante enlaces químicos e incluso su distribución espacial. Para nombrarlas, se empleamos las reglas de la nomenclatura o formulación química. Existen varios tipos de fórmulas químicas: 

  • Fórmula empírica: Es una expresión que representa la proporción más simple en la que están presentes los átomos que forman un compuesto químico. Es por tanto la representación mas sencilla de un compuesto. 
  •  Fórmula molecular: Es una expresión que representa el número exacto de átomos que existen en el compuesto. Para determinar la fórmula molecular de un compuesto es necesario conocer la masa molecular del mismo.
La fórmula molecular será un múltiplo entero de la fórmula empírica.

Concepto de mol


Un mol de átomos de cualquier elemento contiene 6,022 · 1023 átomos de ese elemento. La masa en gramos de cada mol será distinta para cada elemento de la tabla periódica puesto que la masa de cada átomo es distinta. Un mol de moléculas de cualquier compuesto contiene 6,022 · 1023 moléculas de ese compuesto. Un mol es la cantidad de sustancia cuya masa en gramos es numéricamente igual a la masa molecular.

La definición actual de mol es la siguiente:
Mol es la cantidad de sustancia que contiene el mismo número de entidades elementales que hay en 0,012 Kg de carbono 12. Este número de entidades elementales corresponde al número de Avogadro cuyo valor es de 6,022 · 1023

Leyes ponderales

 
La ley de conservación de la materia indica que: "La materia ni se crea ni se destruye, únicamente se transforma". En otros términos, la suma de las masas de los reactivos es igual a la suma de las masas de los productos
La ley de las proporciones constantes o definidas indica que: "Un compuesto contiene siempre los mismos elementos y en las mismas proporciones, independientemente del proceso seguido en su formación", es decir, cuando dos o más elementos se combinan químicamente para formar un compuesto, siempre lo hacen en una relación de masas constantes.
La ley de las proporciones múltiples indica que: "Cuando dos elementos A y B, son capaces de combinarse entre sí para formar varios compuestos distintos, las distintas masas de B que se unen a una cierta masa de A, están en relación de números enteros y sencillos"

ACTIVIDAD III: Ley de las proporciones múltiples

La ley de los volúmenes de combinación indica que: "Los volúmenes de los gases reaccionantes y de los gases obtenidos guardan una relación de números enteros sencillos, siempre y cuando se trabaje a presión y temperatura constantes

ACTIVIDAD IV: Leyes estequiométricas